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ABSTRACT
When search engine users have trouble finding information,
they may become frustrated, possibly resulting in a bad ex-
perience (even if they are ultimately successful). In a user
study in which participants were given difficult information
seeking tasks, half of all queries submitted resulted in some
degree of self-reported frustration. A third of all successful
tasks involved at least one instance of frustration. By mod-
eling searcher frustration, search engines can predict the cur-
rent state of user frustration and decide when to intervene
with alternative search strategies to prevent the user from
becoming more frustrated, giving up, or switching to another
search engine. We present several models to predict frustra-
tion using features extracted from query logs and physical
sensors. We are able to predict frustration with a mean av-
erage precision of 66% from the physical sensors, and 87%
from the query log features.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Search pro-
cess

General Terms
Experimentation, Measurement

Keywords
user modeling, searcher frustration, query logs, emotional
sensors

1. INTRODUCTION
In this work, we investigate searcher frustration. We con-

sider users frustrated in the context of information retrieval
(IR) when their search process is impeded. A frustration
model capable of predicting how frustrated searchers are
throughout their search is useful retrospectively as an effec-
tiveness measure. More importantly, it allows for real-time
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system intervention to help frustrated searchers, hopefully
preventing users from leaving for another search engine or
abandoning the search altogether.

This work investigates what aspects of users’ interactions
with a search engine during a task can be used to predict
frustration. Depending on the level of frustration, we may
wish to change the underlying retrieval algorithm or the user
interface. For example, one source of difficulty in retrieval
is a user’s inability to sift through the results presented for
a query [13, 17]. One way that a system could adapt to
address this kind of frustration is to show the user a concep-
tual breakdown of the results: rather than listing all results,
group them based on the key concepts that best represent
them [13]. Using a well worn example, if a user enters ‘java’,
they can see the results based on ‘islands’, ‘programming
languages’, ‘coffee’, etc. Of course, most search engines al-
ready strive to diversify result sets, so documents relating
to all of these different facets of ‘java’ are present, but they
might not be clear to some users, causing users to become
frustrated.

An example from the IR literature of a system that adapts
based on a user model is work by White et al. [15]. They
used implicit relevance feedback to detect changes in users’
information needs and alter the retrieval strategy based on
the degree of change. The focus of our work is to detect
frustrated behavior, and adapt the system based on the type
of frustration, regardless of the information need itself.

The goals for our line of research are as follows: first, de-
termine how to detect a user’s level of frustration; second,
determine what the key causes or types of frustration are;
and third, determine the kinds of system interventions that
can reduce different types of frustration. This work explores
the question of whether frustration can be accurately pre-
dicted and what features derived from query logs and phys-
ical sensors are the most useful in doing so in a controlled
lab study.

Our key contributions are (1) the first user study of frus-
tration in web search (2) a publicly available data set of the
data collected, and (3) a comparison of on-line classification
models derived from sensor and query log data to predict
frustration.

The remainder of this paper is organized as follows. In
Section 2 we discuss related work from the IR, intelligent
tutoring systems (ITS), and information science (IS) litera-
ture. We then describe the task and evaluation in Section 3,
followed by a description of the user study we conducted in
Section 4. In Section 5 we describe the models used followed
in Section 6 by a description and analysis of the experiments.



In Sections 7 and 8 we discuss the results and design impli-
cations of our findings. We end with a summary and future
work in Section 9.

2. RELATED WORK
In this section, we first describe frustration in the con-

text of IR. We then touch upon some of the related work
in three areas: searcher satisfaction modeling, work carried
out in the field of ITS where frustration has been modeled,
and various work pertaining to user modeling in IR, such as
predicting when users will switch to another search engine.
These works helped to shape the user study we conducted
and the models used to predict searcher frustration.

2.1 Frustration in Information Retrieval
We define frustration in the context of IR as the imped-

iment of search progress. Xie and Cool [17] explored help-
seeking or problematic situations that arise in searching dig-
ital libraries. They identified fifteen types of help-seeking
situations that their 120 novice participants encountered.
The authors’ use of ‘help-seeking situations’ aligns well with
our definition of frustration, since the issues encountered by
the subjects impeded their search progress. The authors
created a model of the factors that contribute to these help-
seeking situations from the user, task, system, and interac-
tion aspects. The qualitative nature of the study is useful
in designing general help systems for digital library systems.
However, there was no attempt to model frustration using
logged interaction data, which is the goal of our work.

In a study examining how children search the Internet,
Druin et al. [7] found that all of the twelve participants ex-
perienced frustration while searching. The authors point
out that children make up one of the largest groups of Inter-
net users, making frustration a major concern. In a similar
study, Bilal and Kirby [2] compared the searching behav-
ior of graduate students and children on Yahooligans! They
found that over 50% of graduate students and 43% of chil-
dren were frustrated and confused during their searches. In
addition, they found that while graduate students quickly
recovered from “breakdowns” (where users were unable to
find results for a keyword search), children did not.

Kuhlthau [12] found that frustration is an emotion com-
monly experienced during the exploration phase of a search
process. She states that encountering inconsistent informa-
tion from various sources can cause frustration and lead to
search abandonment.

2.2 Satisfaction in Information Retrieval
While frustration prediction has not been directly studied

in the field of IR, searcher satisfaction has. Satisfaction
in search can have different meanings [1, 8, 9]. We define
searcher satisfaction as the fulfillment of a user’s information
need. While satisfaction and frustration are closely related,
they are distinct. As a consequence, searchers can ultimately
satisfy their information need, but still be quite frustrated
in the process [3].

In previous work, satisfaction has been examined at the
task or session level1 [1, 8, 9, 10]. These satisfaction models
only cover user satisfaction after a task has been completed,
not while a task is in progress. As such, satisfaction models
are useful for retrospective analysis and improvement, but

1We use task and session interchangeably in this research.

not as a real-time predictor. In contrast, with a frustration
model that is defined throughout a search, these real-time
solutions are available.

In web search study, Fox et al. [8] found there exists an
association between query log features and searcher satisfac-
tion, with the most predictive features being click-through,
the time spent on the search result page, and the manner
in which a user ended a search. They also analyzed brows-
ing patterns and found some more indicative of satisfaction
than others, such as entering a query, clicking on one result,
and then ending the task. Clicking four or more results was
more indicative of dissatisfaction.

Huffman and Hochster [10] found a relatively strong cor-
relation with session satisfaction using a linear model en-
compassing the relevance of the first three results returned
for the first query in a search task, whether the information
need was navigational, and the number of events in the ses-
sion. In a similar study of search task success, Hassan et al.
[9] used a Markov model of search action sequences to pre-
dict success at the end of a task. The model outperformed
a method using the DCG of the first query’s result set, sug-
gesting that a model of the interactions derivable from a
query log is better than general relevance in modeling satis-
faction.

2.3 Frustration in Tutoring Systems
While we have not found any discussion of predicting frus-

tration in the IR literature, we did find studies that model
frustration in the ITS literature. Cooper et al. [4] describe a
study in which students using an intelligent tutoring system
were outfitted with four sensors: a mental state camera that
focused on the student’s face, a skin conductance bracelet,
a pressure sensitive mouse, and a chair seat capable of de-
tecting posture.

Cooper et al. found that across the three experiments
they conducted, the mental state camera was the best stand-
alone sensor to use in conjunction with the tutoring inter-
action logs for determining frustration. However, using fea-
tures from all sensors and the interaction logs performed
best. They used step-wise regression to develop a model for
describing each emotion. In another study using the same
sensors, but different features, Kapoor, Burleson, and Picard
[11] created a model that was capable of classifying when the
user of an ITS was going to click an I’m frustrated! button
with 79% accuracy and a chance accuracy of 58%.

2.4 User Modeling in Information Retrieval
In this section, we summarize several models used in IR

prediction tasks that rely, at least in part, on query log
data [6, 9, 10, 16]. We are specifically interested in the
types of models used (e.g., linear regression) and the key
features.

Huffman and Hochster [10] predicted session satisfaction
useing a regression model incorporating the relevance of the
top three results returned for the first query, the type of
information need, and the number of actions in the session.
Hassan et al. [9] used a Markov model to predict task success
and found that sequences of actions, as well as the time
between the actions, are good predictors.

Downey et al. [6] created a Bayesian dependency network
to predict the next user browsing action given the previous n
actions, parameterized by a long list of user, session, query,
result click, non-search action, and temporal features. They



found that using an action history with more than just the
immediately preceding action hurt performance.

White and Dumais [16] explored predicting when users
would switch between search engines. Their goal was “not
to optimize the model but rather to determine the predic-
tive value of the query/session/user feature classes for the
switch prediction challenge.” They used a logistic regres-
sion model that encompassed query, session, and user level
features. They found that using all three feature classes out-
performed all other combinations of feature classes and did
much better than the baseline for most recall levels.

3. TASK AND EVALUATION
In this section, we outline the details of the frustration

modeling task and its evaluation.

3.1 Task
Our goal is to predict whether a user is frustrated at the

end of each query interaction during a session. We define a
query interaction as all interactions between a user and the
the browser pertaining to a specific query up until another
query is entered or the session ends. We will refer to these as
searches. A session consists of one or more searches directed
at fulfilling a specific information need or task. We will
refer to these as tasks. At the end of a search, we ask,
“Is the user frustrated at this point of the task?” To make
the prediction, we can derive features from the search just
completed or from all the searches conducted in the task
so far. We refer to these feature sets as search and task
features, respectively. In addition, features can be derived
from a user’s other tasks, which we call user features.

In this paper, we consider frustration prediction as a bi-
nary task. However, multi-class prediction may also be use-
ful, using either regression or a multi-class machine learning
method. We also focus on general frustration, but predict-
ing types of frustration may also be useful, e.g., predicting
the fifteen types of frustration outlined by Xie and Cool [17].

3.2 Evaluation
In this section, we describe the metrics that we use to eval-

uate frustration models. Our ultimate goal is to use frus-
tration models to decide when to intervene to help the user
during the search process. Since many interaction methods
with which we would like to intervene are not typically used
because of their undesirable, frustration-causing attributes
(i.e., interaction and latency), we are interested in mini-
mizing our false-positives (non-frustrated searchers that our
models say are frustrated), potentially at the cost of re-
call. For that reason, our predominant evaluation metric is
a macro-average (across users) F-score with β = 0.5, which
gives increased weight to precision over recall. We also use
11-point interpolated average precision to compare models
across users. This metric tells us how well, on average, a
model can rank instances of frustration by user.

Comparing across users rather than with a micro ap-
proach avoids one frustrated searcher in the test data skew-
ing the results. Un-weighted macro-averaging treats all users
equally. A desirable model is one that performs well across
all users, not just on one specific user. In Section 6 we re-
port macro accuracy, precision, Fβ=0.5, and mean average
precision (MAP). To be clear, MAP is uninterpolated, in
contrast to 11-point interpolated average precision.

1. What is the average temperature in [Dallas, SD/Albany, GA-
/Springfield, IL] for winter? Summer?

2. Name three bridges that collapsed in the USA since 2007.
3. In what year did the USA experience its worst drought? What

was the average precipitation in the country that year?
4. How many pixels must be dead on a MacBook before Apple will

replace the laptop? Assume the laptop is still under warranty.
5. Is the band [Snow Patrol/Greenday/State Radio/Goo Goo

Dolls/Counting Crows] coming to Amherst, MA within the
next year? If not, when and where will they be playing closest?

7. What was the best selling television (brand & model) of 2008?
8. Find the hours of the PetsMart nearest [Wichita,

KS/Thorndale, TX/Nitro, WV].
9. How much did the Dow Jones Industrial Average in-

crease/decrease at the end of yesterday?
10. Find three coffee shops with WI-FI in [Staunton, VA/Canton,

OH/Metairie, LA].
11. Where is the nearest Chipotle restaurant with respect to

[Manchester, MD/Brownsville, Oregon/Morey, CO]?
12. What’s the helpline phone number for Verizon Wireless in MA?
13. Name four places to get a car inspection for a normal passenger

car in [Hanover, PA/Collinwood, TN/Salem, NC].

Table 1: The information seeking tasks given to
users in the user study. Variations are included in
brackets.

We use an approximation of Fisher’s randomization test to
obtain a double sided p-value for significance. Using 100,000
trials for every model comparison, the error at α = 0.05 is
±0.001 (2% error) [14].

4. USER STUDY
In Fall 2009, we conducted a user study with thirty partic-

ipants from the University of Massachusetts Amherst. The
mean age of participants was 26. Most participants were
computer science or engineering graduates, others were from
English, kinesiology, physics, chemical engineering, and op-
eration management. Two participants were undergradu-
ates. Twenty-seven users reported a ‘5’ (the highest) on a
five-point search experience scale; one reported a ‘4’ and two
a ‘3’. There were seven females and twenty-three males.

Each participant was asked to complete seven2 tasks from
a pool of twelve (several with multiple versions) and to spend
no more than seven minutes on each, though this was not
strictly enforced. The order of the tasks was determined by
four 12 × 12 Latin squares, which removed ordering effects
from the study. Users were given tasks one at a time, so
they were unaware of the tasks later in the order. Most of
the tasks were designed to be difficult to solve with a search
engine since the answer was not easily found on a single
page. The complete list of tasks is shown in Table 1.

The study relied on a modified version of the Lemur Query
Log Toolbar3 for Firefox.4 To begin a task, participants had
to click a ‘Start Task’ button. This prompted them with the
task and a brief questionnaire about how well they under-
stood the task and the degree to which they felt they knew
the answer. They were asked to use any of four search en-
gines: Bing, Google, Yahoo!, or Ask.com and were allowed
to switch at any time. Links to these appeared on the tool-
bar and were randomly reordered at the start of each task.
Users were allowed to use tabs within Firefox.

For every query entered, users were prompted to describe
their expectations for the query. Each time they navigated

2Two participants completed eight tasks, but it took longer
than expected, so seven tasks were used from then on.
3http://www.lemurproject.org/querylogtoolbar/
4http://www.mozilla.com/en-US/firefox/firefox.html



Query Frustration None Extreme
Feedback value: 1 2 3 4 5

Frequency: 235 128 68 25 7
Percentage: 51% 28% 15% 5% 1%

Table 2: Distribution of user-reported frustration
for searches.

Task Success Bad Fair&Good Excellent Perfect
Feedback value: 1 2&3 4 5

Frequency: 14 66 48 83
Percentage: 7% 31% 23% 39%

Table 3: Distribution of user-reported task success.
An error in the logging software caused the ‘fair’
and ‘good’ levels to be conflated.

away from a non-search page, they were asked the degree
to which the page satisfied the task on a five point scale,
with an option to evaluate later. At the end of a search (de-
termined by the user entering a new query or clicking ‘End
Task’), users were asked what the search actually provided
relative to their expectations, how well the search satisfied
their task (on a five point scale), how frustrated they were
with the task so far (on a five point scale), and, if they indi-
cated at least slight frustration (2–5 on the five-point scale),
we asked them to describe their frustration.

When users finished the task by clicking ‘End Task’, they
were asked to evaluate, on a five point scale, how successful
the session was, what their most useful query was, how they
would suggest a search engine be changed to better address
the task, and what other resources they would have sought
to respond to the task.

A total of 211 tasks were completed (one participant com-
pleted one fewer task because of computer problems), feed-
back was provided for 463 queries, and 711 pages were vis-
ited. On the frustration feedback scale, ‘1’ is not frustrated
at all and ‘5’ is extremely frustrated. In Table 2 we see
that users reported frustration for half of their queries. The
most common reasons given for being frustrated were: (1)
off-topic results, (2) more effort than expected, (3) results
that were too general, (4) un-corroborated answers, and (5)
seemingly non-existent answers.

4.1 Success and Frustration
We find that users become frustrated even when they suc-

ceed at their information seeking task. Table 3 shows the
breakdown of user-reported task success. The majority of
users reported their tasks were satisfied at the ‘excellent’ or
‘perfect’ levels. Table 4 shows that while not finding the in-
formation can be frustrating, even when the information is
found, users can get frustrated. Users were successful in 62%
of all tasks, but experience some degree of frustration in over
a third of those successful tasks. This evidence supports the
exploration of frustration modeling and differentiates it from
task success or satisfaction prediction.

4.2 Individual Variation
Since we measure self-reported frustration, the results

may depend on the individual’s temperament as well as in-
trospection. In Figure 1 we see that individuals from the
test set do indeed vary in their self-reported frustration.
The training set shows a similar trend. One phlegmatic
individual did not report any frustration for any task. In
our experimental section we will conduct leave-one-user-out

Frustration No Frustration Total
Success 46 85 131
Failure 72 8 80

Total 118 93 211

Table 4: The number of tasks for which users were
highly successful (levels 4–5) or not versus whether
or not the task had any searchers for which the user
was at least somewhat frustration.

cross-validation to concentrate on the aspects of frustration
that generalize across users.

5. MODELING SEARCHER FRUSTRATION
In this section, we describe the models we use to predict

frustration. We consider a number of features that have been
used in previous studies, both in the IR and ITS fields. The
first set of features include those derived from a client-side
query log, while the second set includes those from three
physical sensors.

5.1 Query Log Features
The query log used in this study is client-side. Interactions

between the user and the Web were recorded by means of a
Firefox plug-in, adapted from the Lemur Query Log Tool-
bar. The toolbar captures data including page focuses, click
events, navigation events such as pressing the back and for-
ward buttons, copy and paste actions, page scrolling, and
mouse movements, among others. Every event includes a
timestamp.

Given the section of the log that corresponds to a particu-
lar task, we can derive search and task features (Section 3.1).
The search features include search duration, pages visited,
query length, max page scroll, and others. The task fea-
tures span the start of the current task through the end
of the most recent search. They include aggregates of the
search features such as task duration, queries entered, aver-
age search duration, total pages visited, average pages vis-
ited per search, etc. Due to space constraints, we have not
included a full listing of the forty-seven features. However,
they are very similar to features used in previous query log
analyses [8, 16].

5.2 Sensor Features
We used three physical sensors in our study: a mental

state camera, a pressure sensitive mouse, and a pressure
sensitive chair. These are three of the four sensors used by
Cooper et al. [4]; we use the same high-level readings. The
camera software provides confidence values for six mental
states: agreeing, disagreeing, unsure, interested, thinking,
and confident. The mouse consists of six pressure sensors—
two on top and two on either side. Following Cooper et al.
[4], we calculate the following feature with the values:

mouse =

P6
i=1MSi

1023
, (1)

where MS represents the six mouse sensors and the denomi-
nator is the maximum pressure reading provided by any one
sensor. This feature has a range from 0 to 6. Finally, the
chair has three pressure sensors on the back and three on the
seat. We derive three aggregate features: net seat change,



net back change, and leaning forward [4]:

netSeatChange(t) =
˛̨P3

i=1 SSi[t− 1]− SSi[t]
˛̨
, (2)

netBackChange(t) =
˛̨P3

i=1BSi[t− 1]−BSi[t]
˛̨
, (3)

sitForward(t) =

8><>:
0 if

W3
i=1BSi > 200,

1 if
V3
i=1 200 ≥ BSi > −1,

NA otherwise,

(4)

where SS corresponds to the three seat sensors, BS the three
back sensors, and t is the time step at which the feature is
being computed. These were found to be useful features by
both Cooper et al. [4] and D’Mello et al. [5].

To derive features, we find the minimum, maximum,
mean, and standard deviation for each reading over some
time frame. Previous studies used window sizes of 150 sec-
onds preceding the event being predicted [4, 11]. In our
setting, we used three appropriate time frames: aggregating
the features from the beginning of the task, from the be-
ginning of the search, and thirty seconds preceding the end
of the search where we are predicting frustration. The first
two are equivalent to the query log task and search features,
respectively. In addition, we decided to use two versions of
each window: one that ignores any segments of time where a
user was responding to a feedback prompt and a version that
uses those time segments. See Section 4 for details about the
feedback prompts.

In total, this yields (6 camera readings + 1 mouse read-
ing + 3 chair readings) × {min | max | mean | stddev} ×
{task | search | 30-seconds} × {prompts | no-prompts} =
240 features.

5.3 Models
We consider two baselines for this study: (1) always pre-

dicting users are frustrated and (2) predicting they are frus-
trated only when they have abandoned their query (i.e., they
did not click on anything). Prior to the study, we believed
this to be a reasonable approximation of frustration.

We construct seven additional models using logistic re-
gression. All features were normalized per user prior to
training. One model uses all of the features from both the
sensors and the query logs and is referred to as QL+Sensors.
Three of the models are based on sequential forward fea-
ture selection on just the query log features, just the sensor
features, and all the features. We name these SFS-QL, SFS-
Sensors, and SFS-QL+Sensors, respectively. The sequential
forward selection process starts with an empty feature set,
considering all features ‘unused.’ On each iteration of the
algorithm, the unused feature that performs best in com-
bination with the current pool of ‘used’ features is moved
from the ‘unused’ to the ‘used’ pool. The algorithm stops
when no improvement in performance is made. The ‘used’
features are the final selection. For each of the SFS sets, all
of the features from the set were available for selection.

We optimized our feature selection for Fβ=0.5 using macro
precision and recall at the optimal logistic regression score
threshold. For example, if a subset of features achieved a
macro F-score of 0.6 with a score threshold of 0.5 and an-
other subset achieved an F-score of 0.7 at a score threshold
of 0.4, the latter would be selected and the corresponding
threshold noted. The features selected for each model are
listed in Table 5. The models show the order in which the
features were selected. For the query log features, task Max-
QrCharLen is the maximum length (in characters) of any

SFS-QL

1. task Duration 4. search RsltsVisitedPrev,
2. task QryPropUnq 5. task AvgPgMaxScroll
3. task MaxQryCharLen

SFS-Sensors

1. wind30s inclPrmpts unsureConf-mean,
2. wind30s noPrmpts sitForward-min,
3. task inclPrmpts netSeatChange-min

SFS-QL+Sensors

1. task Duration, 2. task QryPropUnq,
3. wind30s noPrmpts unsureConf-mean,
4. search inclPrmpts unsureConf-min
5. wind30s noPrmpts concentratingConf-stddev,
6. search noPrmpts netBackChange-min,
7. search noPrmpts concentratingConf-min,

W&D

search QryCharLen, search AvgTokenLen,
task Duration, task ActionCount,
user AvgURLCount

Table 5: The top three models were greedily learned
from subsets of the query log and sensor feature sets
by sequential forward selection. The bottom model
is derived from features that worked well for de-
tecting when users would switch search engines [16].
The meaning of the sensor feature names are self-
evident based on Section 5.2; query log features are
described in Section 5.3.

query seen so far in a task; task Duration is the time, in sec-
onds, of the task; task QryPropUnq specifies the number of
unique queries seen so far in a task; task AvgPgMaxScroll is
the mean average max scroll per page per query in the task;
search RsltsVisitedPrev is the number of results visited dur-
ing a search that were visited previously in the task.

We create a seventh model based on the features that
White and Dumais [16] found were most important for pre-
dicting when users would switch search engines, which we
refer to as W&D. The features in this model (Table 5) are:
the most recent query’s length in characters (search Qry-
CharLen), the average token length of the most recent query
(search AvgTokenLen), the duration of the task in seconds
(task Duration), the number of user actions in the task
(task ActionCount), and the average number of URLs vis-
ited per task for the current user (user AvgURLCount).

The eighth model we explore is the Markov Model Likeli-
hood (MML) used by Hassan et al. [9] to predict task suc-
cess. The input to this model is a sequence of events with
time lapses between events included. After being trained on
event sequences leading up to frustrated and non-frustrated
instances, the model produces two scores: one calculates the
likelihood of the event sequence being indicative of frustra-
tion; the other calculates the likelihood of the event transi-
tion times being indicative of frustration.

The scores produced range from 0−∞, with scores closer
to 0 meaning the sequence is more consistent with frustra-
tion, 1 being indifferent, and scores greater than 1 meaning
the sequence is more consistent with non-frustration. We
use the following variation of Platt smoothing to map the
scores into the range 0− 1.

MML(x) =
1.0

1 + eα(−x)+β , (5)

where x is the ratio and α and β are the smoothing param-
eters, set to 4 as determined by our personal judgment on
the range of ratios output in the training and development
phases.



Event Description
Q Enter query.
RF Focus on a search results page.
RC Click on a link on a results page.
S Scroll.
OF Focus on a non-results list page.
OC Click on a link on a non-results list page.

Table 6: The event types used in the Markov Model
sequences.

The sequence events we used for the MML model are listed
in Table 6. The MML uses task-level event sequences—each
instance consists of the sequence of events starting from the
beginning of the task up until the point where frustration is
being predicted. Duplicate events were ignored and the time
between events was recorded in seconds. We used the scores
as features with a logistic regression classifier. We refer to
this model as MML-time in the rest of the paper.

On the training/development data (Section 7), the W&D

model performed very well, so we decided to add the MML-

time as an additional feature, creating the ninth model
W&D+MML-time. We felt that the sequence information cap-
tured by the MML model would benefit the static features
used by the W&D model.

6. RESULTS
We randomly selected twenty of the thirty participants’

data for training and development. In the training/devel-
opment set, we put each user’s data into its own fold, giving
us a total of twenty folds. This avoids using a particular
user’s data for both training and testing for cross valida-
tion experiments. We used twenty-fold cross validation to
select features and tune the score threshold at which Fβ=0.5,
precision, and accuracy are computed.

For the results presented here, we re-trained our mod-
els on all twenty users in the training/development set and
tested on the remaining ten users. The macro-averages were
calculated across users.

The training set contained 323 queries (51% of which were
frustrated) for which there was feedback across 136 tasks
for twenty users. The test set contained 137 query-feedback
instances (44% of which were frustrated) across seventy-one
tasks for ten users. One query from the training set and two
from the testing set were removed due to logging errors that
prevented the queries from being properly processed. We
should note that during the study, two participants were
accidentally given the same ordering of tasks and both users
were randomly selected for testing. While this does increase
the chances of ordering bias, we believe the effect is small
due to the similar performance of the models on the training
and testing set. Figure 1 shows the number of total and
frustrated instances per user in the test set.

Table 7 shows the results of the experiments. Accuracy
is measured across all users. The other three metrics are
only measured for nine of the users, as user ‘25’ never indi-
cated frustration, causing the metrics to be undefined. Ac-
curacy, precision, and Fβ=0.5 are calculated using the binary
predictions created by thresholding each models’ output ac-
cording to the development set. The no-clicks baseline is
undefined for three of the metrics. For precision and F, this
is because of undefined values for certain users. For MAP,
both no-clicks and always-frustrated are undefined since
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Figure 1: The total number of feedback instances
and frustrated instances per user, ordered by total
instances.

Accuracy Precision Fβ=0.5 MAP
W&D 0.75 0.81 0.80 0.87
QL+Sens 0.54 0.50 0.49 0.59
SFS-QL+Sens 0.69 0.74 0.72 0.85
SFS-QL 0.69 0.74 0.73 0.80
SFS-Sens 0.55 0.58 0.61 0.65
MML-time 0.56 0.57 0.62 0.65
W&D+MML-time 0.66 0.85 0.69 0.76
No clicks 0.57 — — —
Always frustrated 0.44 0.49 0.55 —

Table 7: Macro-level results for the models on the
test set. Accuracy is over all ten users. The other
three metrics do not include user ‘25’.

it involves ranking scores and both baselines produce binary
scores.

The metrics show that the relatively simple W&D model
outperforms the rest for most metrics. Not all differences
are significant, however. As there is no concise way to illus-
trate significance for all pairs of systems for each metric, we
will describe the most critical differences for Fβ=0.5. The W&D
model is statistically different from all other systems with
respect to Fβ=0.5 except SFS-QL. In turn, SFS-QL is statis-
tically different from all the other systems except SFS-all

and W&D+MML-time.
Figure 2 shows the 11-point interpolated average precision

across users for each model. Using all features outperforms
the baseline, but is much worse then selecting only a subset
of the features (SFS-QL+Sensors). This graph shows the W&D,
W&D+MML-time, and SFS-QL+Sensors models in contention
for the highest precision at different recall levels, all resulting
in precision above 70% with 100% recall.

While not shown, when average precision is broken down
by user, it is clear that no one model performs well for all
users. This suggests that some form of personalization could
be useful in determining how much influence each feature
type should have for a particular user.

As we mentioned in Section 3.2, macro Fβ=0.5 is the met-
ric we are most interested in. While we calculated this value
using the score threshold for each model selected during de-
velopment as shown in Table 7, observing how the score
threshold affects the F-score can help us understand how
stable each model is between the development and test sets.
Figure 3 shows Fβ=0.5 as the score threshold ranges from 0 to
1 for select models. The W&D model reaches its optimum on
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Figure 2: Macro 11-point interpolated average pre-
cision across the test users for each model.

Feature Weight
task Duration 2.049
user AvgTaskURLCount -1.293
search QryCharLen 0.670
search AvgTokenLen -0.497
task ActionCount -0.089

Table 8: The weights learned for the features in the
W&D model ranked by influence (intercept = -0.406).

the test set at nearly the same score threshold as in the de-
velopment set. In contrast, the W&D+MML-time and MML-time

models peak at a lower and higher threshold, respectively,
on the test set. While the maximum for SFS-Sensors on
the test set is close to its score threshold, there is a substan-
tial decrease in performance just past its optimal threshold.
This suggests that several of the trained models are sensitive
to new data.

Turning to the learned weights for the best performing
model, the W&D feature weights are listed in Table 8. The
model is likely to predict frustration for a lengthy session in
which few URLs have been visited and actions taken, and
where the most recent query has many characters overall,
but very few per term.

7. DISCUSSION
Lab studies such as this one are highly controlled—in

terms of users, tasks, timing, environment, etc.—and as a
result the results are not necessarily directly transferable to
more realistic settings. Despite this, we feel that our find-
ings are still generally applicable to real Web search and
from which many practical observations can be gleaned. In
this section we will discuss a few of these observations as
well as some questions that arose.

The results suggest that a few relatively simple query log
features can reliably predict frustration. This is useful in de-
veloping a search system that predicts frustration. However,
some information necessary for the best performing model,
W&D, is client-side, such as the average number of URLs vis-
ited in other tasks and the number of actions performed by
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Figure 3: Fβ=0.5 using macro precision and recall for
select models over the ten test users. The points de-
note the threshold that was chosen in development
for each model.

the user during the current task. This means a system would
likely need to be implemented an a browser add-on.

The features we found most useful for detecting frustra-
tion are the same as those White and Dumais [16] found
most useful for detecting when a user will switch search en-
gines. This suggests that this feature set may have a broader
scope of predictive power for related tasks, such as task sat-
isfaction and query abandonment.

One of the surprises of this research for us was the per-
formance of the sensors. Given the results of Cooper et al.
[4], we expected the sensors would strongly correlate with
user-reported frustration and that we would struggle to find
a set of query log features to even come close to the per-
formance of the sensors. In fact, the opposite was true.
There may be several reasons for this. One reason might
be that the study occurred in an open room and up to five
participants were active in the study at a given time. The
presence of other participants may have affected how an in-
dividual maintained their composure. Arguments could be
made that this is or is not a realistic situation; it proba-
bly varies by where people search (e.g., in an open office
space vs. a cubicle vs. a living room). Another possibility
is that the way the feedback was gathered upset the natural
reactions of the participants. However, we hope that includ-
ing a set of features that ignores sensor readings during the
time intervals when prompts were shown removed such bias.
A third reason may be that the users’ physical reaction to
frustration may not have aligned with their report of the
emotion and our attempts to discretize the sensor readings
may have affected the sensors’ predictive ability.

Another surprise was the performance of the MML-time

model. We thought that the sequence data would have been
more helpful than it was. One reason for its performance
may be the event language. We used a simple, high-level
set of events. This is in contrast to Hassan et al. [9], who
used events such as the type of link clicked on a search re-
sults page. Adding more advanced features may be more
useful. However, there is another problem with sequences
on our data set: data sparsity. While our data set is suffi-



cient for static feature classification, there is likely an insuffi-
cient number of unique sequences to build a reliable model.
A Web-scale data set, such as those used in other studies
[6, 9], would be more useful in combination with this model.
The trade off is that user-reported frustration is not included
with Web-scale search logs.

Lastly, the greedy sequential forward selection algorithm
did not provide a feature set that performed as well as or
better than the W&D model on the training data. Future work
should explore more advanced selection techniques to find a
better approximation for this task.

8. DESIGN IMPLICATIONS
This study has several implications for designing systems

that detect frustration. First, the best performing models
do not rely on sensor data. Using query log data alone is suf-
ficient to predict frustration well. Second, in light of the first
implication, a Web browser add-on would be a viable vehi-
cle to deliver frustration detection. Browser add-ons have
access to all of the query log statistics needed to predict
frustration. Third, the model that performed best uses five
relatively simple query log features in a logistic regression
model, making classification fast, simple, and usable in re-
altime. A fourth implication is that one model, such as the
W&D model, will not work equally well across all users. Thus,
personalization may be important and future work should
investigate how it would be useful.

9. CONCLUSIONS
In this paper we used features derived from a client-side

query log and three physical sensors to predict user-reported
frustration during a controlled study of Web search. We
compared several models based on the information retrieval
[8, 9, 16] and the intelligent tutoring systems [4, 5, 11] liter-
ature. We found that using a few simple query log features
perform best.

In addition, the toolbar along with all of the data collected
during the study are being made publicly available.5 Much
more data was collected than was used in this paper, such
as user-reported page relevance, query satisfaction, and task
satisfaction. All pages viewed were downloaded, including
search results pages. Mouse movements were also collected,
from which a useful feature could be derived for tasks such
as frustration prediction, among others. The data set serves
as a means for others to compare against the results of this
paper, as well as provide insights into ways to build on the
study design used. Future work should explore incorporat-
ing other features from this rich data set, such as mouse
movements, into frustration models.

One direction of future work is investigating how the mod-
els presented in this paper transfer to real searching environ-
ments, where there are user-defined, and likely interleaved,
tasks. Another direction of future work is finding a set
of useful features from the less-rich server-side information.
This would allow a system to be built that does not depend
on add-ons or other client-side instrumentation.

We intend to explore what types of interventions are ap-
propriate for addressing searcher frustration and when to
use them. One plausible design is to present a user with a
list of search assisting technologies (e.g., explicit relevance

5
http://ciir.cs.umass.edu/downloads/frustrationUserStudy Oct-

2009/data.tar.bz2

feedback) when frustration is detected. Alternatively, clas-
sifying types of frustration may be helpful; one or more in-
terventions could be presented to the user based on the type
of frustration. Future work should consider the effects of
interventions and presentation on frustration so that the in-
terventions are not counterproductive.
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