A Comparison Of Efficacy And Assumptions Of Bootstrapping Algorithms For
Training Information Extraction Systems

Rayid Ghani* and Rosie Jones'

*Accenture Technology Labs
Chicago, IL 60601, USA
rayid.ghani@accenture.com

tSchool of Computer Science
Carnegie Mellon University, Pittsburgh PA 15213, USA
rosie.jones@cs.cmu.edu

Abstract
Information Extraction systems offer a way of automating the discovery of information from text documents. Research and commercial
systems use considerable training data to learn dictionaries and patterns to use for extraction. Learning to extract useful information from
text data using only minutes of user time means that we need to leverage unlabeled data to accompany the small amount of labeled data.
Several algorithms have been proposed for bootstrapping from very few examples for several text learning tasks but no systematic effort
has been made to apply all of them to information extraction tasks. In this paper we compare a bootstrapping algorithm developed for
information extraction, meta-bootstrapping, with two others previously developed or evaluated for document classification; cotraining
and coEM. We discuss properties of these algorithms that affect their efficacy for training information extraction systems and evaluate
their performance when using scant training data for learning several information extraction tasks. We also discuss the assumptions
underlying each algorithm such as that seeds supplied by a user will be present and correct in the data, that noun-phrases and their contexts
contain redundant information about the distribution of classes, and that syntactic co-occurrence correlates with semantic similarity. We

examine these assumptions by assessing their empirical validity across several data sets and information extraction tasks.

1. Introduction

Information Extraction systems offer a way of automat-
ing the discovery of information from text documents. Both
research and commercial systems for information extrac-
tion need large amounts of labeled training data to learn
dictionaries and extraction patterns. Collecting these la-
beled examples can be very expensive, thus emphasizing
the need for algorithms that can provide accurate classifi-
cations with only a a few labeled examples. One way to
reduce the amount of labeled data required is to develop al-
gorithms that can learn effectively from a small number of
labeled examples augmented with a large number of unla-
beled examples.

Several algorithms have been proposed for bootstrap-
ping from very few examples for several text learning tasks.
Using Expectation Maximization to estimate maximum a
posteriori parameters of a generative model for text clas-
sification (Nigam et al., 2000), using a generative model
built from unlabeled data to perform discriminative classi-
fication (Jaakkola and Haussler, 1999), and using transduc-
tive inference for support vector machines to optimize per-
formance on a specific test set (Joachims, 1999) are some
examples that have shown that unlabeled data can signifi-
cantly improve classification performance, especially with
sparse labeled training data. For information extraction,
Yangarber et al. used seed information extraction template
patterns to find target sentences from unlabeled documents,
then assumed strongly correlated patterns are also relevant,
for learning new templates. They used an unlabeled corpus
of 5,000 to 10,000 documents, and suggest extending the
size of the corpus used, as many initial patterns are very in-
frequently occurring (Yangarber et al., 2000a; Yangarber et

al., 2000b).

A related set of research uses labeled and unlabeled data
in problem domains where the features naturally divide into
two disjoint sets. Blum and Mitchell (Blum and Mitchell,
1998) presented an algorithm for classifying web pages that
builds two classifiers: one over the words that appear on the
page, and another over the words appearing in hyperlinks
pointing to that page. Datasets whose features naturally
partition into two sets, and algorithms that use this divi-
sion, fall into the co-training setting (Blum and Mitchell,
1998). Meta-Bootstrapping (Riloff and Jones, 1999) is an
approach to learning dictionaries for information extraction
starting only from a handful of phrases which are examples
of the target class. It makes use of the fact that noun-phrases
and the partial-sentences they are embedded in can be used
as two complementary sources of information about seman-
tic classes. Similar methods have been used for named en-
tity classification (Collins and Singer, 1999).

Although a lot of effort has been devoted to developing
bootstrapping algorithms for text learning tasks, there has
been very little work in systematically applying these al-
gorithms for information extraction and evaluating them on
a common set of documents. All of the previously men-
tioned techniques have been tested on different types of
problems, with different sets of documents, under different
experimental conditions, thus making it difficult to objec-
tively evaluate the applicability and effectiveness of these
algorithms. In this paper, we first describe a range of boot-
strapping approaches that fall into the cotraining setting and
lay out the underlying assumptions for each. We then ex-
perimentally compare the performance of each algorithm
on a common set of information extraction tasks and docu-



ments and relate it to the degree to which the assumptions
are satisfied in the data sets and semantic learning tasks.

2. Thelnformation Extraction Task

The information extraction tasks we tackle in this paper
involve extracting noun phrases that fall into the following
three semantic classes: organizations, people and locations.
It is important to note that although named entity recogniz-
ers are usually used to extract these classes, the distinction
we make in this paper is to extract all noun phrases (includ-
ing “construction company”, “jail warden”, and “far-flung
ports™) instead of restricting our task to only proper nouns
(which is the case in standard named entity recognizers).
Because our focus is extraction of general semantic classes,
we have not used many of the features common in English-
language named entity recognition, including ones based
on sequences of charactes in upper case, and matches to
dictionaries, though adding these could improve the accu-
racy for these classes. This is important to note since that
makes it likely that our results will translate to other seman-
tic classes which are not found in online lists or written in
capital letters.

The techniques we compare here are similar to those
that have been used for semantic lexicon induction (eg
(Riloff and Jones, 1999)). However, we believe that the
noun-phrases we extract should be taken “in context”.
Thus, terms we generally consider unambiguous, such as
place-names or dictionary terms, can now have different
meanings depending on the context that they occur in. For
example, the word “Phoenix” usually refers to a location,
as in the following sentence:

A scenic drive from Phoenix lies a place of leg-
endary beauty.

but can also refer to the “Phoenix Land Company”, as in
this sentence:

Phoenix seeks to divest non-strategic properties
if alternate uses cannot de monstrate sustainable
20% returns on capital investment.

We can group these types of occurences in three broad
categories:

General Polysemy: many words have multiple meanings.
For example, “company” can refer to a commercial
entity or to companionship.

General Terms: many words have a broad meaning that
can refer to entities of various types. For example,
“customer” can refer to a person or a company.

Proper Name Ambiguity: proper names can be associ-
ated with entities of different types. For example,
“John Hancock” can refer to a person or a company,
sicne companies are often named after people.

In general, we belive that the context determines
whether the meaning of the word can be further deter-
mined and that we can correctly classify the noun phrase
into the semantic class by examining the immediate con-
text, in addition to the words in the noun phrase. Therefore

we approach this problem as an information extraction task,
where the goal is to extract and label noun phrase instances
that correspond to semantic categories of interest.

3. Data Set and Representation

As our data set, we used 4392 corporate web pages col-
lected for the WebKB project (Craven et al., 1998) of which
4160 were used for training and 232 were set aside as a test
set. We preprocessed the web pages by removing HTML
tags and adding periods to the end of sentences when neces-
sary.> We then parsed the web pages using a shallow parser.

We marked up the held out test data by labeling each
noun phrase as one or more of (NP) instance as an or-
ganization, person, location, or none. We addressed each
task as a binary classification task. Each noun phrase con-
text consists of two items: (1) the noun phrase itself, and
(2) and the context (an extraction pattern). We used the
AutoSlog (Riloff, 1996) system to generate extraction pat-
terns.

By using both the noun phrases and the contexts sur-
rounding them, we provide two different types of features
to our classifier. In many cases, the noun phrase itself will
be unambiguous and clearly associated with a semantic cat-
egory (e.g., “the corporation” will nearly always be an or-
ganization). In these cases, the noun phrase alone would
be sufficient for correct classification. In other cases, the
context itself is a dead give-away. For example, the context
containing the pattern “subsidiary of <np>" nearly always
extracts an organization. In those cases, the context alone is
sufficient. However, we suspect that both the noun phrase
and the context often play a role in determining the correct
classification.

4. Bootstrapping Algorithms

In this section we give a brief overview of each of the
algorithms we will be using for bootstrapping. We analyze
how the properties and assumptions of each may affect ac-
curacy.

4.1. Baseline Methods

Since our bootstrapping algorithms all use seed noun-
phrases for an initial labeling of the training data, we should
look at how much of their accuracy is based on the use of
those seeds, and how much is derived from bootstrapping
using those seeds. To this end, we implemented two base-
lines which use only the seeds, or noun-phrases containing
the seeds, but use no bootstrapping.

4.1.1. Extraction Using Seeds Only

All the algorithms we describe use seeds as their source
of information about the target class. A useful way of as-
sessing what we gain by using a bootstrapping algorithm is
to use the seeds as our sole model of information about the
target class. The seeds we use for bootstrapping all algo-
rithms are shown in Table 1.

1web pages pose a problem for parsers because separate lines
do not always end with a period (e.g., list items and headers). We
used several heuristics to insert periods whenever an independent
line or phrase was suspected.



The algorithm for seed extraction is: any noun-phrase
in the test set exactly matching a word on the seed list is
assigned a score of 1. All other noun-phrases are assigned
the prior.

4.1.2. Head Labeling Extraction

All the bootstrapping algorithms we discuss use the
seeds to perform head-labeling to initialize the training set.
The algorithm for head labeling is: any noun-phrase in the
training set whose head matches a word on the seed list is
assigned a score of 1. This may not lead to completely ac-
curate initialization, if any of the seeds are ambiguous. We
will discuss this in more detail in Section 5.1.

In order to evaluate the contribution of the head-labeling
to overall performance of the bootstrapping, we performed
experiments using the head-labeling alone as information
in order to extracted from the unseen test set.

The algorithm for head labeling extraction is: any
noun-phrase in the test set whose head matches a word on
the seed list is assigned a score of 1. All other noun-phrases
are assigned the prior.

4.2. Bootstrapping Methods

The bootstrapping methods we describe fall under the
cotraining setting where the features naturally partition into
multiple disjoint sets, any of which individually is sufficient
to learn the task. The separation into feature sets we use for
the experiments in this paper is that of noun-phrases, and
noun-phrase-contexts.

4.2.1. Cotraining

Cotraining (Blum and Mitchell, 1998) is a bootstrap-
ping algorithm that was originally developed for combining
labeled and unlabeled data for text classification. At a high
level, it uses a feature split in the data and starting from
seed examples, labels the unlabeled data and adds the most
confidently labeled examples incrementally. When used in
our information extraction setting, the algorithm details are
as follows:

1. Initialize NPs from both positive and negative seeds
2. Use labeled NPs to score contexts

3. Select & most confident positive and negative contexts,
assign them the positive and negative labels

4. Use labeled contexts to label NPs

5. Select £ most confident positive and negative NPs, as-
sign them the positive and negative labels

6. goto 2.

Note that cotraining assumes that we can accurately
model the data by assigning noun-phrases and contexts to
a class. When we add an example, it is either a member
of the class (assigned to the positive class, with a proba-
bility of 1.0) or not (assigned to the negative class, with a
probability of 0.0 of belonging to the target class). As we
will see in section 5.2., many noun-phrases, and many more
contexts, are inherently ambiguous. Cotraining may harm
its performance through its hard (binary 0/1) class assign-
ment.

422. CoEM

coEM was originally proposed for semi-supervised text
classification by Nigam & Ghani (Nigam and Ghani, 2000)
and is similar to the cotraining algorithm described above,
but incorporates some features of EM. cOEM uses the fea-
ture split present in the data, like co-training, but is instead
of adding examples incrementally, it is iterative, like EM.
It starts off using the same initialization as cotraining and
creates two classifiers (one using the NPs and the other us-
ing the context) to score the unlabeled examples. Instead
of assigning the scored examples positive or negative la-
bels, cOEM uses the scores associated with all the examples
and adds all of them to the labeled set probabilistically (in
the same way EM does for semi-supervised classification).
This process iterates until the classifiers converge.

Muslea et al. (Muslea et al., 2000) extended the co-EM
algorithm to incorporate active learning and showed that
it has a robust behavior on a large spectrum of problems
because of its ability to ask for the labels of the most am-
biguous examples, which compensates for the weaknesses
of the underlying semi-supervised algorithm.

In order to apply coEM to learning information extrac-
tion, we seed it with a small list of words. All noun-phrases
with those words as heads are assigned to the positive class,
to initialize the algorithm.

Note that coEM does not perform a hard clustering of
the data, but assigns probabilities between 0 and 1 of each
noun-phrase and context belonging to the target class. This
may reflect well the inherent ambiguity of many terms.

4.2.3. Meta-bootstrapping

Meta-bootstrapping (Riloff and Jones, 1999) is a simple
two-level bootstrapping algorithm using two features sets to
label one another in alternation. It is customized for infor-
mation extraction, using the feature sets noun-phrases and
noun-phrase-contexts (or caseframes). There is no notion
of negative examples or features, but only positive features
and unlabeled features. The two feature sets are used asym-
metrically. The noun-phrases are used as initial data and the
set of positive features grows as the algorithm runs, while
the noun-phrase-contexts are relearned with each outer it-
eration.

Heuristics are used to score the features from one set
at each iteration, based on co-occurrence frequency with
positive and unlabeled features, using both frequency of
co-occurrence, and diversity of co-occurring features. The
highest scoring features are added to the positive feature
list.

Meta-bootstrapping treats the noun-phrases and their
contexts asymmetrically. Once a context is labeled as posi-
tive, all of its co-occurring noun-phrases are assumed to be
positive. However, a noun-phrase labeled as positive is part
of a committee of noun-phrases voting on the next context
to be selected. After a phase of bootstrapping, all contexts
learned are discarded, and only the best noun-phrases are
retained in the permanent dictionary. The bootstrapping is
then recommenced using the expanded list of noun-phrases.
Once a noun-phrase is added to the permanent dictionary,
it is assumed to be representative of the positive class, with
confidence of 1.0.



Seeds

australia, canada, china, england,
france, germany, japan,

mexico, switzerland, united states
inc., praxair, company, companies,
dataram, halter marine group,
Xerox, arco, rayonier timberlands,
puretec

customers, subscriber, people,
users, shareholders, individuals,
clients, leader, director, customer

Class
locations

organizations

people

Table 1: Seeds used for initialization of bootstrapping.

4.3. Activelnitialization

As we saw in the discussion of head-labeling (Section
4.1.2.), using seed words for initializing training may lead
to initialization that includes errors. We give measures of
the rate of errors in head-labeling in Table 3. We will aug-
ment the intialization of bootstrapping by correcting those
errors before bootstrapping begins, and seeing the effects
on test set extraction accuracy. We call this active initial-
ization, by analogy to active learning.

5. Assumptionsin Bootstrapping
Algorithms

The bootstrapping algorithms described in Section 4.2.
have a number of assumptions in common; that initializa-
tion from seeds leads to labels which are accurate for the
target class, that seeds will be present in the data, that sim-
ilar syntactic distribution correlates with semantic similar-
ity, and that noun-phrases and their contexts are redundant
and unambiguous with respect to the semantic classes we
are attempting to learn. We assess the validity of each of
these assumptions by examining the data.

5.1. [Initialization from Seeds Assumption

All the algorithms we describe use seed words as their
source of information about the target class. An assumption
made by all the algorithms we present is that seed words
suggested by a user will be present in the data. We assess
this by comparing seed density for three different tasks over
two types of data, one collected specifically for the task at
hand, one drawn according to a uniform random distribu-
tion over documents on the world wide web. The seeds we
use for initializing bootstrapping all algorithms are shown
in Table 1. We show the density of seed words in different
corpora in Table 2. Note that the peopl e and or gani -
zat i ons classes are much more prevalent in the company
data we are working with than in documents randomly ob-
tained using Yahoo’s random URL page.

Another assumption that arises from using seeds is that
labeling using them accurately labels items in the target se-
mantic class. All three algorithms initialize the unlabeled
data by using the seeds to perform head labeling. Any
noun-phrase with a seed word as its head is labeled as pos-
itive. For example, when canada is in the seed word list,
both “eastern canada” and “marketnet inc. canada” are la-
beled as being positive examples. Table 3 shows the accu-
racy for | ocat i ons and peopl e. For peopl e, some

Corpus | Class Seed-density

(/10,000)
fixed locations 18
random 21
fixed organizations 112
random 17
fixed people 70
random 33

Table 2: Density of seed words per 10,000 noun-phrases in fixes
corpus of company web pages, and corpus of randomly collected
web pages.

Class Accuracy
| ocati ons 98%
peopl e 95%

Table 3: Accuracy of labeling examples automatically using
seed-heads.

words were mostly unambiguous, with the exception of a
few examples, “customers”, which was unambigous except
in prhases such as “industrial customers”. The seed-word
“people” also led to some training examples of questionable
utility, for example “invest in people”. If we learn the con-
text ”invest in”, it may not help in learning to extract words
for people, in the general case. Other seed-words from
the peopl e class proved to be very ambiguous; “leader”
was most often to used to describe a company, as in the
sentence “Anacomp is a world leader in digital document-
management services”.

We will discuss the results of correcting these errors be-
fore beginning bootstrapping in Section 6.3.

5.2. Feature Sets Redundancy Assumption

The bootstrapping algorithms we discuss all assume
that there is sufficient information in each feature set (noun-
phrases and contexts) to use either to label an example.
However, when we look at the ambiguity of noun-phrases
in the test set (Table 4) we see that 81 noun-phrases were
ambiguous between two classes, and 4 were ambiguous be-
tween three classes. This means that these 85 noun-phrases
(2% of the 4413 unique noun-phrases occurring in the test
set) are not in fact sufficient to identify the class. This
discrepancy may hurt cotraining and meta-bootstrapping
more, since they assume that we can classify noun-phrases
into a class with 100% accuracy.

When we examine the same information for contexts
(Table 4) we see even more ambiguity. 36% of contexts are
ambiguous between two or more classes.

We have another measure of the inherent ambiguity of
the noun-phrases making up our target class when we mea-
sure the inter-rater(labeler) agreement on the test set. We
randomly sampled 230 examples from the test collection,
broken into two subsets of size 114 and 116 examples. We
had four labelers label subsets with different amounts of
information. The three conditions were:

e noun-phrase, local syntactic context, and full sentence

(all)

e noun-phrase, local syntactic context (np-context)



Ambiguity | Class(es) Number
of NPs

none 3574

loc 114

1 org 451
person 189

loc, none 6

org, none 31

2 person, none 25
loc, org 6

org, person 13

3 loc, org, none 1
org, person, none 3

Table 4: Distribution of test NPs in classes

Ambiguity | Class(es) Number

of Pats

none 1068

loc 25

1 org 98

person 59

loc, none 51

org, none 271

2 person, none 206

loc, org 5

org, person 50

3 loc, org, none 18

org, person, none 83

4 loc, org, 6
person, none

Table 5: Distribution of test patterns in classes

e noun-phrase only (np).

The labelers were asked to label each example with any
or all of the labels or gani zat i on, per son and| oca-
ti on. Before-hand, they each labeled 100 examples sep-
arate from those described above (in the all condition) and
discussed ways of resolving ambiguous cases (agreeing, for
example, to count “we” as both per son and or gani za-
t i on when it could be referring to the organization or the
individuals in it. The distribution of conditions to labelers
is shown in Figure 6.

We found that when the labelers had access to the noun-
phrase, context, and the full sentence they occurred in, they
agreed on the labeling 90.5% of the time. However, when
one did not have the sentence (only the noun-phrase and
context), agreement dropped to 88.5%. Our algorithms
have only the noun-phrase and contexts to use for learn-
ing. Based on the agreement of our human labelers, we

Labeler | Set 1 Condition | Set 2 Condition
1 NP-context all

2 all NP-context

3 NP all

4 all NP

Table 6: Conditions for inter-rate evaluation - All stands for
NP, context and the entire sentence in which the NP-context
pair appeared

conjecture that the algorithms could do better with more
information.

5.3. Syntactic - Semantic Correlation Assumption

All the algorithms we address in this paper use the as-
sumption that phrases with similar syntactic distributions
have similar semantic meanings. It has been shown (Dagan
et al., 1999) that syntactic cooccurrence leads to cluster-
ings which are useful for natural language tasks. However,
since we seek to extract items from a single semantic target
class at a time, syntactic correlation may not be sufficient
to represent our desired semantic similarity.

The mismatch between syntactic correlation and seman-
tic similarity can be measured directly by measuring con-
text ambiguity, as we did in Section 5.2.. Consider the con-
text “visit <X>", which is ambiguous between all four
of our classes | ocati on, person, organi zati on
and none. It occurs as a |l ocati on in “visit our area”,
ambiguously between per son and or gani zati on in
“visit us”, and as none in “visit our website”.

Similarly, examining the ambiguous noun-phrases we
see that occurring with a particular noun-phrase does not
necessarily determine the semantics of a context. Three of
the three-way ambiguous noun-phrases in our test set are:
“group”, "them” and “they”. Adding “they” to the model
when learning one class may cause an algorithm to add con-
texts which belong to a different class.

Meta-bootstrapping deals with this problem by specif-
ically forbidding a list of 35 stop words (mainly preposi-
tions) from being added to the dictionaries. In addition,
the heuristic that a caseframe be selected by many differ-
ent noun-phrases in the seed list helps prevent the addition
of a single ambiguous noun-phrase to have too strong an
influence on the bootstrapping. The probabilistic labeling
used by coEM helps prevent problems from this ambiguity.
Though we also implemented a stop-list for cotraining, its
all-or-nothing labeling means that ambiguous words not on
the stop list (such as “group”) may have a strong influence
on the bootstrapping.

6. Empirical Comparison of Bootstrapping
Algorithms

After running bootstrapping with each algorithm we
have two models: (1) a set of noun-phrases, with associ-
ated probabilities or scores, and (2) a set of contexts with
probabilities or scores. We then use these models to extract
examples of the target class from a held-out hand annotated
test corpus. Since we are able to associate scores with each
test example, we can sort the test results by score, and cal-
culate precision-recall curves.

6.1. Extraction on the Test Corpus

There are several ways of using the models produced by
bootstrapping to extract from the test corpus:

1. Use only the noun-phrases. This corresponds to using
bootstrapping to acquire a lexicon of terms, along with
probabilities or weights reflecting confidence assigned
by the bootstrapping algorithm. This may have advan-
tage over lists of terms (such as proper names) which



have no such probabilities associated with them. The
probabilities allow us to sort extracted phrases and
thus control whether we obtain few, highly probable
members of the target class, or obtain good coverage,
at the expense of accuracy. We will measure these
trade-offs using precision and recall, discussed in Sec-
tion 6.2..

2. Use only the contexts. In this case we discard the
noun-phrases we learned during bootstrapping, and
use only the contexts as extraction patterns for extract-
ing on the test set. We extract a noun-phrase when it
occurs with one of the contexts in our model, using
the score assigned by that context. This may have the
advantage of allowing greater generalization. Unseen
words and phrases can be extracted from the test cor-
pus, and overspecialization based on the training cor-
pus can be avoided.

3. Use both models. To score a noun-phrase context
pair in the test set, assume independence, and multi-
ply the model noun-phrase and context scores to get
a probability for the example. Noun-phrases and con-
texts not seen in the training corpus are given a score
based on the prior probability. This has the advantage
of combining all the information we acquired during
training. This method is most effective for methods
which assign probability-like scores (coEM and co-
training). For meta-bootstrapping, there is no natural
way of combining the scores.

We experimented with these extraction methods for
all three algorithms, and found that method 2, extract-
ing using only the contexts, was by far the best for meta-
bootstrapping, so all our results for meta-bootstrapping use
this extraction method. CoEM and cotraining performed
best with method 3, combining information from both
noun-phrase and context models, so all results reported for
coEM and cotraining use this extraction method.

6.2. Evaluation

We use the models to score all noun-phrase in-
stances in the test corpus, using context-scoring for meta-
bootstrapping, and noun-phrase-context scoring for coEM
and cotraining, as described in Section 6.1.. Since we could
select a variety of thresholds if we used our models for clas-
sifiation, depending on the target application, we use a large
number of thresholds, calculating precision and recall for
each. Precision is given by

ips
tpe + fpt
where tp; is the number of correct examples above the

threshold, and fp; is the number of incorrect examples
above the threshold. Recall is given by

Precision =

tpt
tpe + fne
where tp; is the number of correct examples above the

threshold and fn; is the number of correct examples below
the threshold.

Recall =

locations
1 : . .
coem ——
metaboot -
08 L cotraining -~
S 06
2
3
T 04r
02
0 Lo
0 1
1
08 F cotraining - |
<
o
2
]
x
0 0.2 0.4 0.6 0.8 1
Recall
organizations
1 ; ; T
coem ——
metaboot
08 I cotraining -
5 06| i
2
] ;
£ 04 F:
02t e e P

Recall

Figure 1: Comparison of bootstrapping using coEM, meta-
bootstrapping and cotraining, for the classes | ocat i ons, peo-
pl e and or gani zat i ons.

6.3. Experimental Results

Figure 1 compares using models obtained by bootstrap-
ping with coEM, meta-bootstrapping and cotraining, for ex-
tracting on a held out test set. COEM performs better than
meta-bootstrapping, while cotraining does very poorly.

Figure 2 shows that bootstrapping using unlabeled doc-
uments gives us significant gains over using just the seeds,
or noun-phrases with the seeds as heads, for extracting from
the test corpus. This difference is least marked for the class
peopl e, which had the most ambiguous seed words.

Figure 3 shows that only a small gain is obtained by
hand-labeling all 669 examples matching the | ocat i on
seeds before commencing bootstrapping, and all 2521 ex-
amples matching the peopl e class before commencing
bootstrapping.



|ocations

coem ——

i seedonly -
08l ™ headlabeling - |
5 06 |
o i
8 ]
& 041 |
|
02t |
O [T 1 1
0 0.2 0.4 06 08 1
Recall
people
1 : : ‘
coem ——
\ seedonly -
0.8 £ headlabeling |
S o6 !
]
8 )
L 04 |
02
0 L
0 02 0.4 06 08 1
Recall
organizations
1 : : ‘
coem ——
i seedonly -
08 i headlabeling -~ |
S 06}
]
3
L 04f !
02
0 L L L L
0 02 0.4 06 08 1

Recall

Figure 2: Comparison of the effects of using seeds alone, noun-
phrases with seeds as heads (head-labeling) and models learned by
bootstrapping with coOEM to extract on the unseen test set. Seeds
and head-labeling lead to good precision, but poor recall. Boot-
strapping using coEM improves recall without loss of precision.

7. Discussion

The advantage cOEM has over meta-bootstrapping and
cotraining may reflect the good match between its prob-
abilistic treatment of the data, and the inherent ambigu-
ity of the classes. This permits an ambiguous example
to be labeled with a probability that reflects its true am-
biguity, rather than committing it to a class, then being
overly influenced by its presence in that class. Since meta-
bootstrapping repeatedly discards the contexts, ambiguity
in the contexts does not hurt the algorithm as much as it
hurts cotraining.

We can see from the comparison of gains from boot-
strapping over using the seeds or head-labeling, that classes
for which we have ambiguous seeds words, such as our

locations
1 ‘ : :
activeinit.coem ——
08 |
S 06
o
3
& 04r
02t
O L L L L
0 0.2 0.4 0.6 0.8 1
Recall
people
1 ; ‘ ‘
activeinit.coem ———
c
o
jO
8
x

0 0.2 0.4 0.6 0.8 1
Recall

Figure 3: Comparison of the effects of hand-labeling all exam-
ples matching the seed-words before commencing bootstrapping
(active initialization), against bootstrapping assuming all are cor-
rect (coem). A small gain is obtained by labeling all data input.

peopl e class benefit less from bootstrapping than those
with relatively unambiguous seed words. However, we still
benefit from bootstrapping. This may be because the noise
introduced by the ambiguous seed-words is somewhat mit-
igated by the presence of the less ambiguous seed words.

For | ocat i ons and peopl e we saw that correcting
by hand the examples labeled using the seed words did not
have a significant impact on the results. This means that for
relatively unambiguous seed words, at least, hand-labeling
them in context does not give us an advantage over using
automatic head-labeling.

For the seed-words and datasets we used, seed density
in the training corpus does not appear to be a major issue.

8. Conclusionsand Future Work

We presented a range of bootstrapping algorithms for
information extraction and provide experimenal results
comparing cotraining, COEM and meta-bootstrapping over
a common set of documents and semantic learning tasks.
We also analyzed the underlying assumptions for each of
the algorithms and found that performance is affected by
the degree to which the assumptions are violated in the data
set and the task at hand.

We also analyzed several ways of initializing the boot-
strapping algorithms and found that the accuracy does not
appear to hinge greatly on initialization that is 100% accu-
rate. A greater density of seeds in the training set for a class
(organi zat i ons and peopl e had greater seed density



than | ocat i ons) does not appear to lead to greater ex-
traction accuracy on the held out test set. Algorithms which
cater to the ambiguity inherent in the feature set are more
reliable for bootstrapping, whether they do that by using the
feature sets asymmetrically (like meta-bootstrapping), or
by allowing probabilistic labeling of examples (like cOEM).

Although we have limited the scope of this paper to al-
gorithms that utilize a feature split present in the data (co-
training setting), we believe that this comparison of algo-
rithms should be extended to settings where such a split
of the features dies not exist, for examples algorithms like
expectation maximization (EM) over the entire combined
feature set. It would also be helpful to extend the analysis
to a greater variety of semantic classes and larger sets of
documents.

Acknowledgements

We thank Tom Mitchell and Ellen Riloff for numerous,
extremely helpful discussions and suggestions that con-
tributed to the work described in this paper.

9. References

Avrim Blum and Tom Mitchell. 1998. Combining labeled
and unlabeled data with co-training. In COLT: Proceed-
ings of the Workshop on Computational Learning The-
ory, Morgan Kaufmann Publishers.

M. Collins and Y. Singer. 1999. Unsupervised Mod-
els for Named Entity Classification. In Proceedings of
the Joint SIGDAT Conference on Empirical Methods in
Natural Language Processing and Very Large Corpora
(EMNLP/VLC-99).

M. Craven, D. DiPasquo, D. Freitag, A. McCallum,
T. Mitchell, K. Nigam, and S. Slattery. 1998. Learning
to Extract Symbolic Knowledge from the World Wide
Web. In Proceedings of the Fifteenth National Confer-
ence on Artificial Intelligence.

Ido Dagan, Lillian Lee, and Fernando Pereira. 1999.
Similarity-based models of cooccurrence probabilities.
Machine Learning, 34(1-3):43-69.

Tommi Jaakkola and David Haussler. 1999. Exploiting
generative models in discriminative classifiers. In Ad-
vances in NIPS 11.

Thorsten Joachims. 1999. Transductive inference for text
classification using support vector machines. In Pro-
ceedings of ICML *99.

lon Muslea, Steven Minton, and Craig A. Knoblock. 2000.
Selective sampling with redundant views. In AAAI/IAAL,
pages 621-626.

Kamal Nigam and Rayid Ghani. 2000. Analyzing the ef-
fectiveness and applicability of co-training. In CIKM,
pages 86-93.

Kamal Nigam, Andrew McCallum, Sebastian Thrun, and
Tom Mitchell. 2000. Text classification from labeled
and unlabeled documents using EM. Machine Learning,
39(2/3):103-134.

Ellen Riloff and Rosie Jones. 1999. Learning Dictio-
naries for Information Extraction by Multi-level Boot-
strapping. In Proceedings of the Sixteenth National Con-
ference on Artificial Intelligence, pages 1044-1049. The
AAAI Press/MIT Press.

E. Riloff. 1996. An Empirical Study of Automated Dic-
tionary Construction for Information Extraction in Three
Domains. 85:101-134.

R. Yangarber, R. Grishman, P. Tapanainen, and S. Hut-
tunen. 2000a. Automatic acquisition of domain knowl-
edge for information extraction. In Proceedings of the
18th International Conference on Computational Lin-
guistics (COLING 2000).

R. Yangarber, R. Grishman, P. Tapanainen, and S. Hut-
tunen. 2000b. Unsupervised discovery of scenario-level
patterns for information extraction. In Proceedings of
the Sixth Conference on Applied Natural Language Pro-
cessing, (ANLP-NAACL 2000), pages 282-289.



