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ABSTRACT

Algorithms for semi-supervised and weakly supervised learn-
ing rely on the cooccurrence of features to propagate labels.
Multiple-view algorithms, such as cotraining and coEM, use
connectivity from the bipartite graph over two complemen-
tary feature sets to bootstrap models from a few initial la-
beled examples. Single-view algorithms, such as EM and
relevance feedback (self-training) also rely on connectivity
on the graph, but look at all features simultaneously. We
show how understanding algorithms, and the data sets they
operate on, in graph theoretic terms can explain some of
the performance of these algorithms. We give empirical re-
sults over an application on learning semantic classes, as
well as showing that Blum and Mitchell’s data also displays
small-world properties. We also show that this enables us to
predict the effectiveness of an algorithm on a task, based on
the properties of the initial examples, as well as overall con-
nectivity of the feature-cooccurrence graph. This may also
allow us to predict how well these algorithms will perform
on new datasets with small-world properties, as well as pro-
viding a way of recommending initial examples for labeling,
and informing active learning algorithms.

1. INTRODUCTION

Semi-supervised and weakly supervised learning algorithms
use a combination of labeled and unlabeled data to learn a
function. Typically the algorithm is initialized with exam-
ples of the target function, which allow a weak model to be
built, which can then by used to classify unlabeled examples,
which in turn contribute to improving the accuracy of the
model. Examples of algorithms displaying these properties
include EM, cotraining [1], coEM [8], and metabootstrap-
ping [10].

The standard proof of the effectiveness of cotraining uses
graph theoretic arguments over an idealized model on a bi-
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partite graph [1]. Blum and Mitchell perform their analysis
under assumptions of statistical independence of feature sets
given the target class, and distribution of features accord-
ing to a random graph model. In particular, their reasoning
applies to connected components of a graph, in which each
component contains instances from a single class, and the
initial labeled set covers all components with high probabil-

ity.

Nigam and Ghani [8] show that coEM is more effective for
semi-supervised learning than both cotraining and EM, both
when statistical independence of the feature sets given the
target class is satisfied, and when it is not satisfied. Muslea
et al. [5] show that cotraining style algorithms can be ef-
fective across a range of levels of statistical independence of
feature sets.

One of the reasons semi-supervised algorithms are effective is
that a model which has accurate estimates from only a sub-
set of the features can label new examples for which some of
the features are unknown. It has been argued that the ideal
setting for a semi-supervised algorithm is one in which the
features are correlated, that is, there is some redundancy in
the feature set, but they are statistically independent given
the target class, that is, within the target class, a feature
is as likely to cooccur with any feature as any other feature
[5, 1]. We will show these arguments are not entirely real-
istic, given data exhibiting small-world properties. We will
show that semi-supervised algorithms nevertheless can per-
form reasonably well on this type of data, and argue that
taking into account the small-world structure when labeling
initial examples, as well as in active learning, can improve
performance.

It has been shown that word cooccurrence graphs and syn-
onymy relationships [2, 11] do not exhibit random graph
structure, but rather a small-world structure, with most
nodes reachable from most other nodes within two to three
steps. We will show that Blum and Mitchell’s dataset also
exhibits these properties. In addition, we will perform a de-
tailed analysis of graph theoretic properties of a a data set
for information extraction, and show strong correlations be-
tween algorithm performance and some of these properties.

2. SEMANTIC CLASS LABELING TASK

The data we use for analyzing the effect of graph structure
on semi-supervised learning performance comes from the in-
formation extraction task of learning to identify locations,



Class Seeds

locations australia, canada, china, england, france,
germany, japan, mexico, switzerland,
united states

organizations | inc., praxair, company, companies, dataram,
halter marine group, xerox, arco,
rayonier timberlands, puretec

people customers, subscriber, people, users,
shareholders, individuals, clients, leader,
director, customer

Table 1: Seeds used for weak labeling of data, for ini-
tialization of bootstrapping.

organizations and people in context. This data has been
described elsewhere [3, 4]. Each example consists of two
features: a noun-phrase n and a local syntactic context c;
this data consists of two partially redundant feature sets.

The local syntactic contexts represent both information about
the grammatical role the noun-phrase plays in the sentence,
and the meaning of that sentence. For example, two dis-
tinct contexts are given by “< x > provides” and “< z >
provide”. The < & > shows where the noun-phrase falls in
word-order, relative to the rest of the context. Distinguish-
ing between these cases is useful for discriminative power,
since they enable us to distinguish subjects which can only
be third-person singular from those which can be plural and
those which can be first- or second-person. By contrast
“provide < x >" covers cases in which the target class can
be the object of the verb provide, rather than the subject.
Subjects of the verb provide tend to be agents, such as peo-
ple and organizations, whereas objects of the verb provide
tend to be resources.

Initial examples are labeled by identifying any noun-phrase
with one of the seeds in Table 1 as its head, as positive.
We also conduct experiments looking at different candidate
seeds for the same task. We took a list of 253 country names
(allcountries) from a list of country domain names, and
took subsets of size 10 and 20 from this list. The number
of occurrences of the words in the list was quite variable, as
shown in Table 2.

3. SMALL-WORLD GRAPHS OF DATA

We are accustomed to thinking of examples in machine learn-
ing as vectors of features, where an example z; is made up
on n features: z; =< x;,..%;, >, and may also be accompa-
nied by a label y;. In this section we describe how we can
view a set of examples X = {z1..z»} as a graph.

We describe both representations of examples with split fea-
ture sets as bipartite graphs, as well as more general repre-
sentation of examples as nodes and edges in a graph. For
the remainder of this paper we will concern ourselves with
bipartite graphs made up of split feature sets.

We will consider a unique instantiation of a feature or fea-
tures to be a node in the graph, and cooccurrence among
features or feature sets to be an edge in the graph.

Seed Set(s) | Num Seeds n o
10-random 10 | 32.9% | 40.0%
20-random 20 | 74.9% | 59.3%
orig-10 10 894
allcountries 253 | 1016

Table 2: For the locations task, 10 random sets of 10
and 20 country names matched variable numbers of in-
stances in the corporate web-page data. Shown here is
the average number of instances matching, across the
10 sets, and the exact number of instances matching for
the original 10 country names, and the entire list of 253
country names. The 10 country names used in basic
experiments were very frequently occurring. Using all
253 country names from a list of country names did not
match many more initial examples. n is the number of
examples matching the seeds (marked with x when this
is an average calculated over 10 sets). o is the variance
in the number of seeds matching, when the average was
calculated over 10 sets.

fi fo label
australia | flew to < x > ?
australia | headquartered in < x > +
australia | < z > broadened ?
china flew to <z > ?
france headquartered in < x > ?
thailand | < z > broadened +
thailand | gulf of < z > ?
director | < z > of multinational company ?
leader < z > in its industry ?

Table 3: Training examples in feature vector format.
Each example has two features, fi (the noun phrase)
and f> (its context). Some examples are labeled positive,
while all other examples are unlabelled.

3.1 Bipartite Graphs over Examples Repre-
sented with Two Feature Sets

Table 3 shows training examples for a semantic labeling task
which we described in Section 2. Each example has two
features, fi (the noun phrase) and fo (the context). Some
examples are labeled positive, while all other examples are
unlabelled.

In Figure 1 we see a bipartite graph representing the same
instances. Each instance is represented by an edge joining
two nodes in the graph. For example, the instance “flew
to china” is represented by the two nodes “flew to < x >”
and “china”, with an edge joining them. In this graph, the
node “australia” is connected to three other nodes, so it
has degree 3. This also represents the fact that “australia”
occurred in 3 unique examples, with three unique different
contexts: flew to < x >, headquartered in < z >, and
< x > broadened.

In supervised machine learning, viewed from this graphical
perspective, we are given a set of nodes and edges, with a
label provided for each of the edges in a training set. We use
these labels to learn to predict labels on edges in a held-out
test set graph.
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Figure 1: Each instance represents an edge joining two
nodes in the graph. For example, the instance “flew to
China” is represented by the two nodes “flew to < z >”
and “china”, with an edge joining them.

For this work we are concerned with semi-supervised learn-
ing. Our training set is a graph with all edges present. We
are given a small number of labeled examples, that is, a
small number of labeled edges, and we use an algorithm to
infer labels for other edges based on the partially labeled
initial set. We then use the learned model to infer labels on
the held-out test set.

While in general this graph is an incomplete sample from
the underlying distribution, we assume that all nodes and
edges edges of interest are present in our sample.

Our example has two feature sets, each of which contain ex-
actly one feature. More generally, this bipartite graph repre-
sentation has a set of features in each feature set. Blum and
Mitchell [1] described their data in graph-theoretic terms,
by splitting the feature set into two redundant sets. For
an example z; =< Ti,..Tiy, Ty, Ti, >, We view the in-
stantiations of the features < z;,..z;, > to be a one node
in the graph, and the example’s second set of features <
Tiyy,-Ti, > to be a second node. The cooccurrence of
these features is an edge in the graph, that is, an exam-
ple is represented by an edge in the graph. We then have
an edge in the graph for each example in our data, and a
node for each unique instantiation of a set of features. This
forms a bipartite graph, since the two feature sets are dis-
tinct, and each example instantiates both sets. Nigam and
Ghani [8] formed similar bipartite graphs with their data
by dividing their feature set randomly into two sets, and
showed improvements on semi-supervised learning by using
this feature set split.

3.2 Unipartite Graphs over all Example Fea-

tures
More generally, if we consider each unique feature instantia-
tion as a node in the graph, then an edge between two nodes

represents cooccurrence between the two feature instantia-
tions, and an example consists of the set of nodes which are
its feature values, and the fully connected graph over them.

4. SMALL WORLD GRAPH PROPERTIES

Small-world graphs have several properties that distinguish
them from random graphs. In this section we discuss these
properties, and highlight how we can expect algorithms to
be affected when the data they are run on exhibit these
properties.

4.1 Node Degree

In small world graphs the distribution of node degrees fol-
lows a power law.

pr ~ ck™ (1)

This means that most nodes are connected to few other
nodes, while a few nodes are connected to a large number
of other nodes. If our data has this property, then we might
expect the degree of the nodes representing our labeled ex-
amples to be of some importance in predicting algorithm
effectiveness on a data set. It could affect the propaga-
tion both of accuracies and inaccuracies in the model. For
example, in the cotraining setting, if we correctly label a
high-degree node, we obtain correct labels for many differ-
ent adjacent nodes. Many different examples sharing one
half part of the split feature set can be labeled correctly via
this node. Conversely, an incorrect label on a high-degree
node can propagate the error to many other examples.

This simple observation suggests a hybrid approach to semi-
supervised learning that has not been proposed previously,
in which greater confidence is required for labeling high-
degree nodes than low-degree nodes.

4.2 Clustering Coefficient

Intuitively, the clustering coefficient measures how densely
connected the graph is, by measuring, over all connected
triples of nodes, how many form triangles. In our semi-
supervised learning setting, the clustering coefficient will be
useful in predicting the redundancy of features, as well as
whether a small sample is sufficiently large to exhibit the
true underlying connectivity structure.

Newman and Park [6] show that the value of o from the
power law is also predictive of the clustering coefficient. In
particular, for a < %, we expect to see large values of the
clustering coefficient C, as C increases with increasing sys-
tem size.

4.3 Connected Components

The connectivity of the cooccurrence graph is key to the
success of any bootstrapping algorithm. Since we hope to
learn about a phrase from its cooccurrences, and our algo-
rithms transmit information about likelihood of class mem-
bership through cooccurrence links, we are dependent on
the existence of links between portions of the graphs which
have labels on the edges, and portions of the graphs which
have no labels on the edges. In Figure 1, the portion of the
graph which contains “<leader, < x > in its industry>" is
a separate component. We have no labeled edges in this
component.



4.4  Graph Connectivity and Initialization Con-
ditions
We can propagate label information only through edges on
the graph. In particular, we cannot propagate label infor-
mation from one component of the graph to another discon-
nected component. In Figure 1, we cannot use labels from
other portions of the graph to learn to label the edge in the
disconnected component which contains “<leader, < z > in
its industry>”. Thus our set of initial examples and their
distribution over components in the graph will be key in our
how effective the semi-supervised learning algorithm can be.

4.5 Graph Connectivity and Active Learning
The connectivity of the graph may also explain the impor-
tance of active learning for algorithm effectiveness. Active
learning may compensate for the lack of component coverage
in initial examples.

5. SPEARMANRANK CORRELATIONTEST

To understand the extent to which a variety of experimental
conditions predict performance, we can consolidate results
from multiple experiments, and see if general trends emerge.
By focusing on different properties of experiments, such as
the number of examples labeled by seeds, or the number
of examples labeled during active learning, and aggregat-
ing over multiple experiments, we can measure the degree
to which each property affects the results. While each in-
dividual experimental result is affected by the combination
of conditions, over many different experiments we can see
general trends.

To measure these trends, we can perform the Spearman
rank correlation test over the results of the experiments,
in combination with a candidate predictive property of the
experiments. The Spearman rank correlation test is a non-
parametric test, ie it does not make assumptions about the
form of the relationship between two variables. For exam-
ple, in this chapter we will use the Spearman rank correla-
tion test to test whether the rank of algorithm performance
is predicted by the rank of the number of examples labeled.
This means that we can detect a positive relationship be-
tween algorithm performance and number of examples la-
beled with active learning, without making any assumptions
about the form of that relationship (for example, without as-
suming the relationship is linear). The Spearman rank corre-
lation test is related to the Pearson correlation test, but uses
the rank of the value rather than the value itself. For our
example of measuring how the number of examples labeled
with active learning predicts performance, we will order the
number of examples labeled, such that each experiment has
arank in that ordering, and order the results, such that each
experiment has a position in the ordering of results. Then
for all n experiments, the i*" experiment gives the pair of <
breakevenScore;, numExzamplesActivelyLabeled; >. For
each experiment ¢ we find both the rank by breakevenScore:
R; = rank(breakeven;) and the rank by number of examples
labeled with active learning: S; = rank(examplesLabeled;).
Ties are assigned their average rank. The formula for the
Spearman rank correlation test is then found by using ranks
in the Pearson linear correlation formula (and is given in
Equation 2 [9]). A Spearman correlation score 7, close to
1.0 shows a positive correlation in the ranks. A Spearman

correlation score close to -1.0 shows a negative correlation,
while scores close to 0 show little correlation. When we cal-
culate the Spearman correlation score we can also calculate
the significance level of the test. A significance score of near
0 shows that our measurement of the correlation is statisti-
cally significant. Typically we would like to see significance
scores of below 0.05 to have confidence in the correlation
score.

o DR -R)(S-5)
V(R - R [ (5 - 5

(2)

6. SMALLWORLD NATURE OF NOUN-PHRASE

CONTEXT COOCCURRENCE GRAPH

We can view our data consisting of pairs < n,c > of noun-
phrases and contexts as a graph, if we represent each noun-
phrase and each context as a node, and each pair as an
edge in the graph. The bootstrapping algorithms we explore
exploit cooccurrence information to propagate evidence of
class membership. Thus examining the graph structure of
the data may provide insight into the expected effectiveness
of algorithms on the data. In addition, the extent to which
nodes are connected into many or few components will af-
fect the likely performance of algorithms, since cooccurrence
information will provide evidence only among nodes in the
same component. The presence of seeds in different com-
ponents may provide insight into the performance of boot-
strapping algorithms with a given seed set. Any tendency of
active learning to pick out examples in different components
may explain how active learning contributes to bootstrap-
ping over data initially labeled with seeds.

If our noun-phrase context pairs exhibit small-world struc-
ture, and pronouns and very common nouns form the hubs
of the connectivity graph, it may explain the importance of
stopwords and frequent seeds in our models.

To see whether our data exhibits small-world structure, we
must measure the average node degree, as well as the clus-
tering coefficient which have different values in small-world
graphs than random graphs.

6.1 Average Node Degree

When we look at just the noun-phrases in our corpus, we see
in Figure 2 that the distribution of the number of contexts
they are linked to follows a power law. In Table 4 we see
the noun-phrases with the highest degree, which are con-
nected to the most different contexts, ie these are the hubs
of the graph. Note that some of these examples, such as
“company” and “customers” are common nouns which are
members of our target classes. Others are pronouns which
would also be members of our target classes; “he” for exam-
ple is a member of the people class.

Figure 2 also shows the distribution of outdegrees for con-
texts. Table 4 also shows the contexts with the highest
degree. This list contains a mixture of very ambiguous con-
texts, like “including”, which could occur with almost any
noun-phrase, and quite unambiguous ones, like “said” which
would occur primarily with people and occasionally with or-
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Figure 2: When we fit a line to the log-log plot, we find
the power law parameter « is 2.24 and 1.95 for noun-
phrases and contexts respectively.

ganizations. While some of the highest degree contexts ap-
pear similar to one another, for example “< x > provides”,
“< x > provide” and “provide < x >’, as discussed in Sec-
tion 2 these provide power for distinguishing distinct cases,
particularly whether the noun-phrase is the subject or object
of the verb “provide”. Subjects of the verb provide tend to
be agents, such as people and organizations, whereas objects
of the verb provide tend to be resources.

We can find the coefficient of the power law, by fitting a
line to the log-log graph. We have the probability of a node
having k neighbors given by the formula

pr = ck® ®3)
log(pk) = log(ck™) (4)
log(pr) = log(c) — alog(k) (5)

Then —q is the slope of a line we fit to the data points.

For contexts, the coefficient of the power law « is 1.95, ie
we can express the formula for the number of noun-phrases
for each context as

i~ k—1.95 (6)

while for noun-phrases, the constant « in the power law is
2.24, ie

Pr ~ k—2.24 (7)

Figure 2 shows the lines we fit to the graph of node degrees
in the noun-phrase context graph.

The mean degree of noun-phrases is 2.32, while the mean
degree of contexts is 7.56. This means that class informa-
tion about a noun-phrase can be propagated to just over
two different contexts on average, while class information
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Figure 3: When we fit a line to the log-log plot of the
cotraining data, we find the power law parameter « is
2.58 and 1.14 for Docs and Hyperlinks respectively.

about a context can be propagated to over seven different
noun-phrases. Labeling a noun-phrase in isolation will af-
fect less nodes than labeling a context in isolation. We also
can expect sources of information about the label of a con-
text, since on average seven different noun-phrases will be
connected to it, providing more information than the two
contexts connected on average to a randomly selected noun-
phrase. This suggests that a bootstrapping algorithm such
as metabootstrapping, which labels all noun-phrases cooc-
curring with a given context, will propagate information, or
noise, quickly throughout the graph.

In Figure 3 we see a plot of the node degree of Blum and
Mitchell’s cotraining data, under the assumption that a hy-
perlink is defined by a unique set of words, and a document
is defined by a unique hyperlink. We find that this data also
follows a power law.

6.2 Clustering Coefficient

To see whether our data exhibits the small-world property,
we will examine the clustering coefficient [7]. Intuitively, the
clustering coefficient measures how densely connected the
graph is, by measuring, over all connected triples of nodes,
how many form triangles. The formula for the clustering
coefficient is given by:

3 x numberoftrianglesinthegraph
" numbero fconnectedtripleso fvertices

(8)

On the training data, we find that the clustering coefficient
is 0.22, while on the test data the clustering coefficient is
0.97. This shows that the larger training set has less densely
connected nodes, probably because there are few isolated
components.

Newman et al calculate clustering coefficients on bipartite
graphs representing social networks [7] and found that com-
pany directors (a small graph) have a clustering coefficient



Noun-phrase | Outdegree
you 1656
we 1479
it 1173
company 1043
this 635
all 520
they 500
information 448
us 367
any 339
products 332
i 319
site 314
one 311
1996 282
he 269
customers 269
these 263
them 263
time 234

Context Outdegree
<x> including 683
including <x> 612
<x> provides 565
provides <x> 565
provide <x> 390
<x> include 389
include <x> 375
<x> provide 364
one of <x> 354
<x> made 345
<x> offers 338
offers <x> 320
<x> said 287
<x> used 283
includes <x> 279
provide <x> 266
use <x> 263
like <x> 260
variety of <x> 252
<x> includes 250

Table 4: The twenty noun-phrases and contexts with the highest outdegree. The outdegree is the number of different
contexts that the noun-phrase cooccurs with. The noun-phrase list contains a mixture of pronouns, anaphora and
common nouns. The context list contains a mixture of very ambiguous contexts, like “including”, which could occur
with almost any noun-phrase, and quite unambiguous ones, like “said” which would occur primarily with people or

organizations.

of 0.59, while movie actors (a larger graph) have a clustering
coefficient of 0.199.

6.3 Connected Components
6.3.1 Measured Graph Components

Measuring the connectivity of our training corpus, we find
1945 separate connected components. 92129 nodes of 99014
are in the largest component, ie 93% of all nodes are con-
nected. However, this leaves 7% of nodes which are not
part of the large connected component. The second largest
component contains only 107 nodes, with most components
containing less than 10 nodes.

The cotraining graph, by contrast, has 189 separate compo-
nents for 746 nodes, with 91 nodes in the largest component,
and 11 nodes in the second largest component. This means
that only 14% of nodes are in the two largest components.
If all training examples appear only in the two largest com-
ponents, we will not be able to learn labels for edges for the
majority of examples.

6.3.2 Graph Connectivity and Seed Frequency
Recall that we initialize our bootstrapping algorithms with
a small set of seed words, which are examples of the tar-
get class. We could conjecture that seed set frequency will
be more important if a graph consists of many unconnected
components, and the seeds occur in the largest connected
component, or many different components. We observed
that frequently occurring examples are important to algo-
rithm effectiveness. Thinking of our data now in small-world
graph-theoretic terms, we can see that frequently occurring
terms are more likely to be hubs, and are more likely to be
connected to many other examples.

We find that for the basic seed sets for the classes people,
locations and organizations, given in Table 1, all 10 seeds
can be found in the main connected component of the graph.

Thus difference between the performance of algorithms over
these tasks cannot be explained by differing presence of the
main connected component.

For the random sets of country names, more varied distribu-
tion can be found in the training set. We showed in earlier
work [3] that different sets of seeds have quite a large vari-
ance in the number of examples they label in the training
set, both in absolute numbers of examples, and in the num-
ber of unique examples. We note that the number of unique
examples labeled by the seeds is exactly the sum of node
degrees of the noun-phrases labeled, since each unique ex-
ample labeled corresponds to one edge from a noun-phrase
to a context. We will first consider how predictive this is of
algorithm performance, then contrast it with the number of
seeds found in the large connected component.

Figure 4 shows that the total node degree of examples la-
beled by seeds is more predictive of algorithm performance
than is the absolute total number of examples labeled by
the seeds. Taking the Spearman rank correlation between
these predictors and breakeven score, we find that the total
node degree has a correlation score of 0.93, while the total
number of examples labeled has a correlation score of 0.92.

Now we examine the number of seeds contained in the largest
component for the random country seeds sets. Figure 5
shows that while the number of seeds in the largest com-
ponent is predictive of algorithm performance (Spearman
rank correlation of 0.75), it is much less predictive than the
total node degree of examples labeled, which as discussed
above has a Spearman rank correlation of 0.93 with final
algorithm breakeven score on the test set.

Next we may ask if the number of components with examples
labeled by seeds is predictive of performance. Bootstrapping
can only propagate labels to other examples in the same
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Figure 4: Total node degree of examples labeled with
seeds (above, Spearman rank correlation score of 0.93)
is slightly more predictive of performance than the to-
tal number of examples labeled (below, Spearman rank
correlation score of 0.92).
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Figure 6: We find that the number of seeds in any
component (above) is not as predictive of performance
(Spearman rank correlation of 0.75) is just as predictive
of algorithm performance as the number of seeds in the
largest component, but less predictive than the number
of components covered by seeds (below, Spearman rank
correlation of 0.87)

component. Recall, however, from Section 6.3.1 that only
7% of examples were found outside the largest component,
so seeds labeling examples in the largest component may be
sufficient. Figure 6 shows the breakeven score against the
number of components covered by seeds in the locations
class, once again using a variety of sets of country names as
seeds. We find that the number of seeds in any component
(left) is not as predictive of performance (Spearman rank
correlation of 0.75) is just as predictive of algorithm perfor-
mance as the number of seeds in the largest component, but
less predictive than the number of components covered by
seeds (right, Spearman rank correlation of 0.87).

Overall we find that the total node degree of examples la-
beled is more predictive of algorithm performance than the
number of components we find seeds in, or the number of
seeds we find in the largest component. These compar-
isons have all been over the locations class. We will now
measure the predictiveness of node degree of algorithm per-
formance, across the three classes locations, people and
organizations. We see in Figure 7 that node degree is pre-
dictive of performance, even across classes. The number of
datapoints here is too few to calculate Spearman rank cor-
relation meaningfully.
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Figure 7: Node degree of examples labeled with
seeds versus breakeven, across classes (above) and
total number of examples labeled with seeds versus
breakeven (below). We find that even across classes,
the total node degree of examples labeled with seeds
is predictive of algorithm performance.

7. ALGORITHM DESIDERATAFORSMALL
WORLDS

On the basis of the arguments and empirical results pre-
sented in this paper, we suggest the following for semi-
learning on data exhibiting small-world properties:

e algorithm sensity to node degree: a hybrid approach,
in which greater confidence is required for labeling
high-degree nodes than low-degree nodes

e initial examples selected to have high degree

e initial examples selected to span many components of
the graph

e examples selected for active learning chosen for high
degree

e examples selected for active learning chosen for span-
ning components of the graph

e node degree used as part of feature set selection criteria

8. CONCLUSIONS

‘We have laid out a set of properties of data sets which we
should examine when applying semi-supervised learning, to-
gether with a description of their likely impact on learning
performance. We have shown that two real world data sets
which have been explored in the context of semi-supervised
learning exhibit small-world graph properties, and measured
algorithm performance in terms of these graph-theoretic prop-
erties, showing that node degree of initial examples is pre-
dictive of algorithm performance, and that the distribution
of labeled examples over components in the graph is also
predictive of performance. We also suggested some ways in
which algorithms and labeling might be customized around
these properties, opening up a range of algorithm design and
application that is sensitive to the underlying distribution
of the data.
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