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Documents with timestamps, such as email and news, can be placed along a timeline. The timeline

for a set of documents returned in response to a query gives an indication of how documents

relevant to that query are distributed in time. Examining the timeline of a query result set

allows us to characterize both how temporally dependent the topic is, as well as how relevant the

results are likely to be. We outline characteristic patterns in query result set timelines, and show

experimentally that we can automatically classify documents into these classes. We also show

that properties of the query result set timeline can help predict the mean average precision of a

query. These results show that meta-features associated with a query can be combined with text

retrieval techniques to improve our understanding and treatment of text search on documents

with timestamps.

Categories and Subject Descriptors: H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval—Query

formulation

General Terms: Algorithms, Experimentation, Theory

Additional Key Words and Phrases: time, temporal profiles, ambiguity, precision prediction, query

classification, event detection, language models

1. INTRODUCTION

We have accesss to many collections of time-stamped documents. For example, email messages have a header

giving the time and date they were sent and new articles typically come annotated with the date they were

written or published. Despite the existence of such collections, traditional information retrieval systems often

do not exploit temporal information. By remaining temporally agnostic, strictly content-based systems fail

Author’s address: R. Jones, Yahoo! Research, 3333 Empire Ave, Burbank, CA 91504, jonesr@yahoo-inc.com.

Author’s address: F. Diaz, Center for Intelligent Information Retrieval, Department of Computer Science, University of Mas-

sachusetts, Amherst, MA 01003, fdiaz@cs.umass.edu; This research was carried out while this author was at Yahoo!

Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use provided that

the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server notice, the title of the

publication, and its date appear, and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to

republish, to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

c© 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–0??.



to recognize subtopic or ambiguous structures in the query results, which may be reflected in the temporal

distribution of documents that the query retrieves. Consider the example of the query “iraq war” submitted

to a news corpus. A strictly content-based system will return a ranked list with documents discussing the

1991 and 2003 conflicts, without distinguishing them. Ideally, we would like the system to detect that two

temporal clusters of documents exist in the retrieved set of documents. Temporally-biased queries occur

frequently in both standard collections and the on web [Li and Croft 2003; Diaz and Jones 2004].

If we can understand the temporal behavior of a query, we can automate the decision of whether to elicit

relevance feedback, or modify an information retrieval system in other ways. We may also be able to use the

temporal properties of the query result-set to diagnose the quality of the retrieval.

We propose distinguishing three temporal classes of queries. The first query type describes queries which

are atemporal, taking place at any time. For these queries, the ideal relevance metric would be content based.

The second query type describes queries which are temporally unambiguous, taking place at a specific period

in time. For these queries, the ideal relevance metric would combine content and temporal information.

The third query type describes those which are temporally ambiguous: taking place during one of several

possible episodes. For this query type the ideal relevance metric would involve identifying the episodes,

finding characteristic, or earliest documents within each episode, and possibly eliciting relevance feedback

over the temporal domain.

In addition, we investigate the role of time when the system is ignorant of the true class or temporal

distribution of a query. To this end, we consider the task of precision prediction. A key missing component

in information retrieval systems is self-diagnostic tests to establish whether the current system can provide

reasonable results for a given query on a document collection. In a language modeling retrieval system,

content-based methods exist for predicting system performance given a query [Cronen-Townsend et al. 2002].

We expand on this work by adding time to the content features. We show that adding temporal features to

a regression increases the predictive power.

This paper is structured as follows. We begin in Section 2 by describing a probabilistic framework for

reasoning about the temporal dimension of a query. These representations can be considered as the temporal

analogs of query language models. We have found it helpful to extend temporal profiles by examining certain

features of them. Our feature set is described in Section 3. Our dataset is described in Section 4. Given

our feature-based representation, we can begin to classify queries into temporal types, to help identify those

which would be good candidates for interactive disambiguation. We do this by first defining a set of temporal

query classes in Section 5. In Section 6 we describe how we hand-labeled queries with the temporal classes

atemporal, temporally ambiguous and temporally unambiguous. Then, using the features described in Section

3, we demonstrate the successful classification of queries in Section 7. In Section 8 we describe the regression

and classification algorithms we use for precision prediction. In Section 8.4 we show that we can improve

the prediction of a query’s average precision by taking into account temporal features. We conclude by
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describing a system for eliciting user feedback for temporally summarizing and disambiguating queries in

Section 9.

The precision prediction experiments in this paper expand results reported in [Diaz and Jones 2004]. The

temporal classification experiments (Section 7) and timeline visualizations (Section 9) have not previously

been published.

2. TEMPORAL PROFILES

Our goal is to model the period of time relevant to a given query. For example, for the query “elections”

our model would ideally give greatest weight to the days on which the most important elections occur, and

smaller but non-zero weight to the days preceding elections, when political speeches may be made, and

following elections, when votes may be tallied.

We have a document collection with time-stamps at our disposal. We use news stories from TREC

corpora. Each document is annotated with a time-stamp as part of its header, corresponding to the date the

document was published. We use the creation date of the document as a proxy for the date of the events

referred to in the document. This is a reasonable assumption for news stories. When the time-stamps are

unavailable, or for other types of text data, it may be useful to analyze the text in the document for date

references [Mani and Wilson 2000]. For example, the content of the documents may contain text referring

to relative dates such as “yesterday” or “next month”, or absolute dates such as “September 11th, 2001”.

Using these dates we could refine our estimate of the day the document is most relevant. For this work,

however, we restricted our attention to the date of publication of the document.

Given the document collection with time-stamps, one way to build the model would be to count documents

containing the query words, assigning weight to each day on the basis of that count. In Figure 1 we see a

simple frequency-based model for the queries “elections” and “iraq war” in a corpus of documents from 1986

through 2004.1

We notice several things about this model. Firstly, for a day with no documents containing a query word,

the frequency is zero. However, no documents may appear on a given topic, due to holidays, other news

events gaining precedence, or vagaries about publication times near midnight, or across different timezones.

It may still be reasonable to assume that a day is relevant to a query, if adjacent days are relevant to the

query. For this reason we smooth across adjacent days, as we will describe in more detail in Section 2.3.

Secondly, this frequency-based model gives weight to days with documents containing the term, regardless

of how relevant those documents are. For example, we may suspect that documents in 1991 and 2003 are

more relevant to the query “iraq war” than documents containing one or more of the terms in the mid-90s,

but the document frequency model does not capture this. In Section 2.1 we describe a way of incorporating

1This corpus collects documents from Tipster disks 1-5 (LDC93T3A), the English Gigaword (LDC2003T05), and HARD

2004(LDC2005T28).
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Fig. 1. Number of documents per day, for the queries “elections” and “iraq war” in a collection consisting of documents

from 1986 through 2004. Histograms generated using the top 1000 retrieved documents.

document relevance into the model. Finally, we should take into account the overall rate of documents

occurring on a given day. We do this by smoothing with the background model, as described in Section 2.2.

2.1 Document Relevance Based Timeline

In a language modeling retrieval context [Croft and Lafferty 2003], we rank the documents in the collection

according to their likelihood of having generated the query:

P (Q|D) =
∏

w∈V

P (w|D)qw (1)

Here, Q is the current query, D is the current document, V is the entire vocabulary of words in the collection

and qw is the number of times the word w occurs in the query. A thorough review the language modeling

approach can be found in other literature [Croft and Lafferty 2003].

We are interested in describing the temporal nature of a query using a probability distribution over days.

We refer to this distribution as a temporal profile of the query. Formally, we would like to estimate the

distribution P (t|Q) where t is the day relevant to the searcher. Since this information is not present in the

query, we encode the probability of the searcher selecting a specific date if the search engine provided such

a capability.

We adopt a relevance modeling solution to this estimation problem [Lavrenko and Croft 2001]. That is, we

want to look at the temporal information each of the top N documents provide and weight this information

according to the document’s probability of relevance, P (Q|D). Thus we look at the first R documents

retrieved, as a proxy for the set of relevant documents, and weight each by the estimated relevance. A

schematic of this approach is shown in Figure 2. The formula for retrieving the top R documents was given

in Formula 1.
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Fig. 2. We retrieve the R top-ranked documents for a query q, then place them along a timeline according to the timestamp,

to generate the initial temporal for q.

Our temporal query model is initially defined as

P̃ (t|Q) =
∑

D∈R

P̃ (t|D)
P (Q|D)

∑

D′∈R P (Q|D′)
(2)

where R is the set of top N documents. Our granularity is on the day scale; that is, the value of t is a single

day. The first factor in this summation represents the temporal information we have about the document.

We represent the temporal information of the document as a distribution over dates. Recalling P (Q|D) is

the document retrieval score, we note that the second factor in this summation is merely the normalized

retrieval score.

In our experiments, the temporal information about a document is extracted from the document times-

tamp. Because each document contains a unique timestamp, our model reduces to a dirac delta on the day

of timestamp,

P̃ (t|D) =







1 if t is equal to the document date, tD

0 otherwise
(3)

In Figure 3 (a) we see the timelines built using document relevance. We see that for the query “iraq war”

the documents in 1991 appear to be more relevant than the documents in the mid-1990s, leading to greater

probability mass in that part of the temporal profile.

2.2 Smoothing by Using Background Temporal Model

The overall distribution of documents in our collection, the background model, provides useful information

about the general characteristics of term frequency and document frequency over dates, independent of the

query we are modelling. Using this background model we can improve our improve our probability estimates

using background smoothing. Background smoothing plays two roles. Firstly, background smoothing handles
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Fig. 3. Probability of relevance of each day, for the queries “elections” (left) and “iraq war” (right) on documents

from 1986 through 2004

potential irregularities in the collection distribution over time. For example, certain dates may have a large

number of articles compared to others. Secondly, background smoothing replaces zero probability events

with a very small probability, allowing us to assign a very small likelihood of a topic being discussed on days

where we have no explicit evidence. We use the distribution of the collection over time as a background

model. This collection temporal model is defined by

P̃ (t|C) =
1

|C|

∑

D∈C

P̃ (t|D), (4)

where C is the set of all documents in the collection.

Our estimate can then be linearly interpolated with this reference model such that

P ′(t|Q) = λP̃ (t|Q) + (1 − λ)P̃ (t|C) (5)

where λ is a smoothing parameter that we set to 0.9 after initial experiments. We see in Figure 3 (b) that

background smoothing effectively adds non-zero mass to all days in the distribution.
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2.3 Smoothing Across Adjacent Days

Since our model is discrete at the level of a single day, and news stories on a single topic may occur over a

period of several days, we smooth our estimate of the model for a single day with the model for adjacent

days. These kinds of smoothing techniques have been explored in the field of time series analysis. We use

simple moving average smoothing. The smoothed estimate for a particular day is defined according to the

previous p days,

P (t|Q) =
1

φ

φ−1
∑

i=0

P ′(t − i|Q) (6)

In our experiments, the period, φ, is always 14, smoothing the probability for a day with the 14 preceding

days, but not subsequent days. This type of retrospective smoothing is common in fields such as market

analysis where only historic information is available. Improvements could be made by smoothing with days

both before and after the reference day or preferentially weighting the reference day. In general, the selection

of φ should depend on the temporal granularity of the topic. For example, some topics will span only a few

days while others span several months. We assume that, for the most part, the topics we consider occur at

a granularity consistent with our smoothing parameter.

The distribution P (t|Q) in Equation 6 is our final estimate of the temporal profile. In Figure 3 (c) we see

the final smoothed models for the queries “election” and “iraq war”.

3. FEATURES OF TEMPORAL PROFILES

In Section 2, we described the estimation of temporal profiles. Figure 4 depicts the temporal profiles for

the queries “poaching” and “hostage taking” over the AP88-89 corpus. The profile for “hostage taking”

appears relatively more episodic, with each episode presumably corresponding to a single real-world hostage

taking event. “Poaching” appears relatively more uniform. In this section, we will define a set of features for

discriminating between temporal profiles. These features will be used both for characterizing the temporal

type of a query’s profile, in Section 7, as well to predict the precision of queries, in Section 8.4. While not

exhaustive, this set of features captures, in our opinion, the most important temporal aspects of temporal

profiles.

Each feature has a different numerical range. After generating the features, we normalize them by shifting

the minimum to zero and scaling by the range, to give features which lie between zero and one. In the

descriptions of features, we will refer both to the raw feature values, and these normalized values.

3.1 Kullback-Leibler Divergence From the Collection Distribution

In language model based information retrieval, a query’s “clarity” is rank-correlated with the effectiveness of

the query at retrieving a precise topic [Cronen-Townsend et al. 2002]. This content clarity measure assumes

that the distribution of words in documents retrieved for a good query will be distinct from the background

distribution. The clarity measure is defined as the Kullback-Leibler (KL) divergence between the query
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Fig. 4. Comparing the profiles for “poaching” and “hostage taking” we see that “hostage taking” appears to be relatively more

episodic. For reference, we also show the profile generated from the entire document collection.

language model P (w|Q) and the collection language model. Formally, the clarity score is defined as,

DKL(P (w|Q), P (w|C)) =
∑

w∈V

P (w|Q) log

(

P (w|Q)

P (w|C)

)

(7)

A larger KL divergence indicates a clearer query. We will refer to this clarity measure as content clarity.

We propose an analog to content clarity for the temporal domain, by measuring the difference between

the distribution over time of documents retrieved in response to a query, and the distribution over time of

documents in the collection as a whole. This can be quantified by taking the KL divergence between the

collection temporal model and the query temporal model. That is,

DKL(P (t|Q), P (t|C)) =
T

∑

t=1

P (t|Q) log

(

P (t|Q)

P (t|C)

)

(8)

We will refer to this feature as temporal KL divergence, or temporalKL. The spiky nature of our example

query, “hostage taking” (Figure 11) is clearly captured by this feature which has the value 0.57, which

normalizes to 0.126 with respect to our collection. At the same time, the relatively a-temporal query,

“poaching”, exhibits a much lower KL divergence, with a KL of 0.247, which normalizes to 0.000 with

respect to our collection.

Note that although temporalKL captures the deviation of documents retrieved for a query from the general

distribution of documents over time, it may not allow us to distinguish between queries corresponding to

events taking place at a single time, (such as “turkish earthquake 1999”) and temporally ambiguous queries

(such as “iraq war”).

3.2 Autocorrelation

While the KL divergence gives us a test of similarity to the temporal background model (P (t|C)), it does

not provide a measure of the randomness of the query time series. To test this, we use the first-order
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autocorrelation of the time series,

r1 =

T−1
∑

t=1

(P (t|Q) − 1

T
)(P (t + 1|Q) − 1

T
)

∑T

t=1
(P (t|Q) − 1

T
)2

(9)

The autocorrelation of a uniform distribution is r1 = 0. When queries contain a strong inter-day depen-

dencies, the autocorrelation value will be high, suggesting a structure to the time series. For example,

autocorrelation is high in cases where a high P (t|Q) tends to predict a high P (t + 1|Q); likewise with low

values. Such behavior indicates that there is predictability to the time series.

In Figure 11, the bursty episodes indicative of hostage events contribute to a higher autocorrelation of

0.938, which normalizes to 0.719 with respect to our collection. Similarly, the relative uniformity of the

“poaching” query leads to a smaller autocorrelation of 0.921, which normalizes to 0.611 with respect to our

collection.

3.3 Statistics of the Rank Order of P (t|Q)

Another way to capture the dynamics of the time series is to consider how much of the probability distribution

is contained in the peaks, and how much in the low-probability regions. In order to do this we can measure

the kurtosis of the time series, which is high for distributions with a sharp peak, and lower for distributions

with less extreme values. In order to focus on the peaks as a single concept, we consider the rank order of

the time series. In these cases, we reorder the days in decreasing P (t|Q). We then construct a distribution

over ranks where, for rank ρ, P (ρ|Q) is defined as the value of P (t|Q) for the day at that rank. We now

consider statistical properties of P (ρ|Q). Specifically, we look at the kurtosis of the rank order. The kurtosis

is defined by,

kurtosis =
µ4

µ2
2

=

∑

P (ρ|Q)(ρi − µ)4

[
∑

P (ρ|Q)(ρi − µ)2]2
(10)

where µi is the ith central moment and µ is the mean. The kurtosis measures the “peakedness” of the curve.

As with temporalKL, the peaked nature of Figure 11 is represented in this feature. However, in this case,

we inspect the rank ordered distribution, providing us a measure based on a smoothed representation of the

peaks.

3.4 Burst Model

An alternative measure for temporal structure follows from Kleinberg’s burst model [Kleinberg 2002]. Be-

cause several new features will be derived from this model, we present a brief overview of the relevant aspects.

The burst model assumes that a hidden state machine generates some number of documents each day2. The

actual number of documents produced is dependent on the state of the machine on that particular day. In

our case, we would assume that there are two states: idle and event. We present a diagram of this model

2In particular, we use Kleinberg’s B2
s

automaton
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idle event

Fig. 5. Two-state model used for generating burst features. The idle state generates documents in a manner consistent

with a uniform distribution over time. The event state generates many more documents per day than the idle state.

Further parameters control the probability of moving between the states. This property controls the smoothness of

the transitions between states. The burst model can be considered as a hand-tuned hidden Markov model.

in Figure 5. In the idle state, documents are produced in batches so that, if the machine never leaves the

event state, it generates documents uniformly across the time span. In the event state, the machine generates

significantly more documents than in the idle state. These generation probabilities are analogous to a hidden

Markov model’s output probabilities. We hand-tuned the model parameters to a scaling parameter of s = 2

and the state-change parameter γ = 1.1.

A second important aspect of the burst model deals with the probability of transition between states. In

our situation, this probability can be viewed as the “momentum” for the machine staying in a state. In

Figure 5, such probabilities would be associated with the arrows. These probabilities are analogous to a

hidden Markov model’s transition probabilities.

We should note here that we are dealing with the original document sample (the top N retrieved docu-

ments) used to estimate the temporal profile, not any estimated model, P (t|Q), described in Section 2. That

is, we look at the actual number of documents occurring on a day as opposed to a probability.

As mentioned, the burst model can be compared to a hidden Markov model. The major difference is that

the burst model specifies all of the parameters usually learned in a hidden Markov model (i.e., there is no

“learning” in the burst model). While we could certainly imagine training an HMM for our task, we were

interested in gross features of a potentially inaccurate model as opposed to finding the true event and idle

state decoding.

We are interested in the state transition sequence most likely responsible for the document distribution.

As with HMMs, we can use dynamic programming to efficiently calculate the values for all such sequences.

We consider the sequence with the highest value to be the most likely sequence. Figure 6 shows a decoding

for a toy example.

Since we hypothesize that the eventfulness of a topic will be a good feature, we consider three measure of

temporal structure from the decoding sequence. The first feature merely counts the number of episodes in

the decoding. We refer to a sequence where the machine is only in the event state as an episode. A graphical

depiction of this feature is presented in Figure 7. The second feature measure the average amount of time

in the idle state. That is, we take the all of the sequences where the machine is only in the idle state and
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Fig. 6. The top frame shows the distribution of retrieved documents over the time span of the collection (one

rectangle=one document). Documents highlighted in red provide evidence of an event or “burst”. The bottom frame

shows a model of the burstiness of the distribution. The burst model considers each day in the time span as either

being relevant to a burst (such a day is in the “event” state) or not relevant to a burst (such a day is in the “idle”

state). The highlighted sequence of states represents a model of the transition between event and idle states over the

course of the time span.

Fig. 7. Number of episodes. This feature of the burst decoding counts the number of sequences of days that the model

predicts are in the burst state. In this example, we detect 2 episodes.

Fig. 8. Average time in the idle state.This feature of the burst decoding average number of days that the decoding

is in the idle state before entering the event state. In this example, we detect three sequences of idle state days of

lengths 3, 5 and 3. On average, then, we spend 3.67 days in the idle state.
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Fig. 9. Burst weight savings. For each sequence of days predicted to be in the event state, we compare the confidence

in the prediction of an event sequence to the confidence in the prediction of an idle sequence. The differences between

these confidences are then averaged to obtain our feature value. In this example, we have two event sequences whose

confidence we will compare to an idle sequence for the same days (depicted in grey).
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feature value value’

temporalKL 0.247 0.000

autocorrelation 0.921 0.611

kurtosis 2.476 0.000

burst weight savings 5.313 0.001

average amount of time in idle state 341.0 0.993

number of transitions into event state 2 0.000

content clarity 1.796 0.451

average precision 0.565 0.565

Fig. 10. Temporal profile and raw and normalized feature values for the query “Poaching” over the AP88-89 collection.

We normalized feature values by shifting and scaling them to lie between zero and one. This query had the minimum

score for both temporal KL and number of transitions into the event state, and so the scores for both of these features

are zero after normalization.

compute the average length. The average length of time the machine is in the idle state gives a measure of

the overall significance of the topic over the time span in the collection. A graphical depiction of this feature

is presented in Figure 8. The third feature measures the quality of the decoding by inspecting how much

we prefer the given decoding over one which does not include transitions into the event state. That is, we

compare the given decoding to one in which there are no transitions into the event state. Kleinberg refers to

this as the weight of a burst. We expect the burst weight to show the “intensity” of the time profile when

relevant documents are found. This may reflect queries corresponding to high-intensity situations which are

distinct from the background model. A graphical depiction of this feature is presented in Figure 9.

The burst model for the profile for “poaching” (Figure 10) spends most of the time in the idle state and

has few transitions into the event state. Meanwhile, the model for “hostage taking” (Figure 11) transitions

5 times and spends, on average, half as much time in the idle state. Combined with the intensity measure,

these features point to a more temporally structured query.
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average amount of time in idle state 132.6 0.225
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content clarity 1.422 0.265

average precision 0.139 0.139

Fig. 11. Temporal profile and raw and normalized feature values for the query “Hostage Taking” over the AP88-89

collection. We normalized feature values by shifting and scaling them to lie between zero and one.

4. DATA

We worked with two types of data in this work: news articles and web search query logs. In this section we

describe these datasets.

4.1 TREC Corpora

We use standard TREC corpora for document-level experiments [Voorhees and Harman 2001]. The TREC

corpora often consist of newswire articles containing time and date stamps. However, these standard col-

lections often contain properties undesirable for our experiments. For examples, there are often large sub-

collections of documents missing temporal information. Others have highly non-uniform temporal distri-

butions of documents. While these issues suggest interesting research questions, we decided to focus on

temporally uniform collection with no missing temporal data.

We chose three news collections for our experiments. We used the Associated Press collection from

Tipster disks 1 and 2 (AP), the Wall Street Journal Collection also from Tipster disks 1 and 2 (WSJ), and

the combined New York Times, Associated Press, Xinhua News Service collections from the AQUAINT disk

(AQUAINT). Unless otherwise noted, the Lemur language modeling toolkit was used for text retrieval [Allan

et al. 2003]. Query likelihood ranking was performed and document models were smoothed using Jelinek-

Mercer smoothing ( λ = 0.6). All documents and queries were stopped using the SMART stopword list

and stemmed using the Krovetz stemmer [Salton 1971; Krovetz 1993]. Dates were extracted from document

identifiers.

Both the AP and WSJ collections have roughly 100 TREC queries associated with them. Because the

queries were constructed with respect to the larger collections, we often found queries with few relevant

documents in our AP and WSJ collections. Therefore, we only used queries with more than 15 relevant

documents in our collections.
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4.2 Weblog Corpus

In addition to the TREC experiments, we were interested in the use of temporal profiles for classifying

web search logs. In these experiments, we use a web search log from an ISP for March 2003-June 2003.

The logs represent a time-stamped record of all of the search sessions by users during this period. Here, a

session refers to a set of queries issued by a single user segmented when a gap of 10 minutes occurs between

queries. For example, if a user issued the queries “salsa”, then “salsa dancing”, and finally “salsa new york”

without 10 minute gap between queries, then the pseudo-document here is the concatenation of these strings

date-stamped with the day on which they occurred. Because this corpus consisted of a huge number of very

short documents, a simple relevance ranking based on Jaccard distance was used [Manning and Schütze

1999]. We manually constructed a set of queries was derived for the search log corpus, with 24 queries in

each of the three classes. The queries were constructed without reference to the documents retrieved. These

queries are publicly available.3 All queries were stemmed and stopwords were removed.

5. TEMPORAL CLASSES

We construct the temporal profile of a query by examining the distribution of the documents it retrieves

across the timespan of the corpus. Figure 11 shows the temporal profile for the query “hostage taking”.

We gave details of how the temporal profiles are constructed in Section 2. Note that the profile contains

several spikes, which may correspond to bursts of documents appearing at particular times in the span of

the collection. The fact that there are multiple bursts suggest that there may be multiple real-world events

generating the documents, which means there is some ambiguity in the query about which real-world event

is referred to.In this section we define three temporal classes of a query by distinguishing three common

patterns of document profiles retrieved in response to queries. We describe these classes below.

5.1 Atemporal Queries

Atemporal queries are relatively time-invariant with respect to the document collection. For example, the

query “opinions about the death penalty” focuses on a topic which is not sensitive to time. Atemporal

queries correspond to a topic which is ongoing. While the details of documents relevant to the query may

change over time, we expect their distribution in time to be similar to the overall distribution of documents.

When overall document volume increases, we expect the volume of documents relevant to atemporal queries

to increase too. Figure 12 shows the time-relevance profile of two queries, “poaching” and “deer”, in two

collections. These are topics of perennial interest, and thus no structure can be seen in the profiles.

5.2 Temporally Unambiguous Queries

Temporally unambiguous queries are relatively distinct with respect to the time dimension. For example,

the query “turkish earthquake 1999” refers to a specific span in time. Figure 13 shows the profiles for two

3http://www.cs.cmu.edu/∼rosie/data/2006TOIS/
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Fig. 12. Temporal profiles of two atemporal queries in two collections. On the left, the temporal profile of the query

“poaching” (TREC Topic 77) estimated from the AP 1988 and 1989 collection. On the right, the temporal profile

of the query “deer” estimated from a web search session log for March 2003-June 2003. Notice how the retrieved

documents are more or less evenly distributed across the collection timespan. In both graphs, the background

collection distribution is plotted as a reference.

queries, “earthquake in armenia” and “matrix”. This profile suggests that the query refers to a specific point

or period in time. Note that a query is only temporally unambiguous with respect to a specific collection. For

example, if our web search log were extended both forward and backward in time, several peaks in interest

would exist (placing in into our third class). Similar behavior would exist if there were another earthquake

in Armenia in our collection. In addition, these examples demonstrate the difference between unanticipated

events such as natural disasters and anticipated events such as a movie release. While not investigated in

this work, detecting these subclasses also might be useful.

5.3 Temporally Ambiguous Queries

Lastly, temporally ambiguous queries refer to the combination of several events and hence might be considered

ambiguous if the user is looking for information about a specific event. For example, the query “iraq war”

may refer to either the conflict in 1992 or the conflict in 2003. Figure 14 shows the profiles of two queries,

“hostage taking” and “nba basketball playoffs”. Here, the profiles have a less distinct temporal profile than

the temporally unambiguous queries but are nonetheless distributed quite differently from the temporal

profile of the entire collection. An interesting example not shown here is the subclass of periodic queries.

6. MANUAL CLASSIFICATION OF QUERIES INTO TEMPORAL CLASSES

In this section we describe how we constructed labeled training and test sets for the temporal classes described

in Section 5. We also show how these classes correlate with average precision where we have relevance

judgements available.
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Fig. 13. Temporal profiles of two temporally unambiguous queries, “earthquake in armenia” and “matrix”. In both

cases, the retrieved set of documents seem to refer to a single event in the collection. The temporal profile on the

left also shows the behavior or an unexpected event (a natural disaster). On the other hand, the temporal profile on

the right depicts an anticipated event (a movie release).

0 100 200 300 400 500 600 700

0.000

0.005

0.010

0.015

0.020

0.025

AP88−89

days

P
(t

)

hostage taking
collection

0 20 40 60 80

0.00

0.02

0.04

0.06

0.08

web search log

days

P
(t

)

nba playoffs
collection

Fig. 14. Temporal profiles of two temporally ambiguous queries, “hostage taking” and “nba basketball playoffs”. The

behavior of the profiles in both cases lies somewhere between the temporally unambiguous and atemporal queries.

While the temporally unambiguous queries contain a unique peak, these profiles consist of multiple, shorter peaks.

The existence of these peaks represents possible sub-events of the query’s topic not found in atemporal profiles.

6.1 Manual Classification of TREC ad-hoc Queries

Attempting to work with a standard set of queries, we used the TREC ad hoc query sets. Since none of

the queries in these sets were annotated with temporal classes, they had to be hand-classified. We classified

more than 50 queries using the TREC topic descriptions. Annotators were not provided temporal profiles.

Specifically, annotators were asked to judge, based on the topic, description, and narrative fields, whether a

query was requesting multiple events, a single event, or had no preference. The annotators labeled 18 common
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queries, and agreed on 13/18 of the common queries, for 72% agreement. On inspecting the documents

retrieved for the queries, we were better able to discern events underlying the queries, and relabeled the

queries on which the annotators disagreed. This suggests that the topic, description and narrative field may

not be sufficient to identify how time-dependent a query is. A system for automatically identifying when a

query is temporally ambiguous may therefore be useful since users may not be able to make this judgment

themselves without inspecting documents.

Interestingly, we found that TREC ad hoc queries belonged only to the atemporal and temporally am-

biguous classes; that is, queries either did not refer to a specific event or referred to a set of events. Each

of the AP and WSJ collections had 51 associated queries (though not exactly the same 51 queries, since we

limited queries to those with 15 or more relevant documents in the given collection). In the AP collection,

28 of these queries were atemporal; the remaining 23 were temporally ambiguous. In the WSJ collection, 34

of these were atemporal; the remaining 17 were temporally ambiguous. Examples of classifications are the

query “Airbus Subsidies” (TREC query 51) which was manually classified as temporally ambiguous, and

the query “U.S. Economics” (TREC query 57) which was manually classified as atemporal.

This data provides us with a set of TREC queries for which relevance judgements are available, classified

into our temporal classes. We will examine the average precision of these queries in Section 6.4. We give

results of classifying into these two classes in Section 7.2.

6.2 Augmented Query Set with Manually Constructed Temporally Unambiguous Queries for the TREC Collec-

tion

In Section 5 we described three temporal classes, but we found only two of them in the TREC ad hoc queries.

We augmented the set of annotated TREC queries with a collection of new, temporally unambiguous queries.

This augmenting set was generated from a list of natural disasters, deaths, and other single-event queries

from the time period of the corpora. An example of one of the temporally unambiguous queries we added

is “Dalai Lama wins Nobel Peace Prize”. The addition of this query set gives us queries for all three

classes defined over the TREC ad hoc collection. We do not have relevance judgements for the third class,

temporally unambiguous queries, but we can perform retrieval with these queries, and use the resulting

profiles for three-way classification experiments. We report results for classifying into these three classes in

Section 7.3.

6.3 Novelty Queries Classified by Temporal Type

Another source of TREC queries is based on the AQUAINT news corpus which covers the years 1996

through 2000. The TREC 2003 Novelty track developed a set of 50 queries for this corpus which were

classified as either “opinion” or “event” queries by NIST labelers. The definitions used for these types were:

—Event topics are about a particular event that occurred within the time period of the collection. Relevant

information pertains specifically to the event.
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AP WSJ

class n x̄ s n x̄ s

temporally ambiguous 23 0.31 0.25 17 0.32 0.37

atemporal 28 0.29 0.38 34 0.27 0.41

Table I. Average and standard deviation of average precision, broken down by query temporal class. In our datasets,

atemporal queries have lower average precision on average, and a greater standard deviation in their average precision.

This may be because the temporally ambiguous queries we used deliberately sought documents from a range of time

periods.

—Opinion topics are about different opinions and points of view on an issue. Relevant information takes

the form of opinions on the issue reported or expressed in the articles.

On inspection, the classes “opinion” and “event” corresponded well with our classes “atemporal” and “tem-

porally unambiguous”, respectively4.

We performed two-way classification experiments with these queries as well. We report results classifying

into these two classes with novelty queries in Section 7.1.

6.4 Average Average Precision Across Temporal Classes

Table 6.4 shows average precision scores, averaged across the queries in the two temporal classes for which

we had relevance judgments: temporally ambiguous and atemporal queries. We find that in our datasets,

atemporal queries have lower average precision on average, and a greater standard deviation in their average

precision. This may be because the temporally ambiguous queries deliberately sought documents from a

range of time periods. We would expect quite different results for relevance judgements from users unaware

of the temporal ambiguity in their query, and expecting documents referring to a single incident.

7. AUTOMATIC CLASSIFICATION OF QUERIES INTO TEMPORAL TYPES

In this section we describe experiments on automatic classification of queries into the three classes atemporal,

temporally unambiguous, and temporally ambiguous, on the basis of the time profiles of retrieved documents.

The general approach we employ here is to use supervised machine learning. We take a sample of pre-

classified queries, use a machine learning algorithm to learn a rule which can be used to classify them, then

apply that rule on a set of held-out queries, and measure the rule’s accuracy.

We used the machine learning algorithm of decision tree induction, implemented by the Weka Toolkit

[Witten and Frank 1999], to learn a classifier and to perform classification. The decision tree induction

algorithm, introduced by Quinlan [Quinlan 1993] greedily chooses features to add to the tree, based on their

discriminative power on the training sample. When no more discriminative questions can be found, the

4Since our definitions did not take into account the time period of the collection, the TREC Novelty event queries are a subset

of our “temporally unambiguous” queries.
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majority class of the examples satisfying all of the conditions is given, for each branching path in the tree.

When using the learned decision tree to classify new examples, the classification program starts from the

base of the tree, and check whether the test example satisfies the stated condition. Each answer leads to a

different branch in the tree, while when we reach a leaf of the tree we assign the class that is represented

there.

There are two baseline systems. The first baseline system classifies queries with the majority class in the

training set. That is, if the majority of the training set queries were of a particular class, this baseline would

always predict that class. The second baseline attempts to learn a classification based only on the content

clarity [Cronen-Townsend et al. 2002] of the query. Content clarity experimentally is able to distinguish

between topically unambiguous and ambiguous queries. Nevertheless, content clarity provides a surprisingly

strong baseline. Because content clarity is also one of our features, this baseline should demonstrate the

contribution of the content clarity feature in the composite system. Note that for the web search-log corpus,

content clarity does not have a clear analog because we are not using a language model retrieval system.

Therefore, it was removed from our feature set for these experiments.

In order to address small query sets, all our classification experiments use ten-fold stratified cross-

validation.

7.1 Results Automatically Classifying Novelty Queries: Temporally Unambiguous and Atemporal

In our first task, we look at distinguishing between temporally unambiguous and atemporal queries. These

are the extrema of the temporal query types we are modeling, and distinguishing between these two classes

may be the easiest of the problems we wish to address. The TREC Novelty queries match these two types,

and have a corresponding corpus of relevance-labeled documents, as described in Section 6.3. The majority

baseline is 56%, since 56% (28 out of 50) of the novelty queries are in the class temporally ambiguous. The

remaining 22 or 44% are in the class atemporal.

Table II shows the accuracy of the trained decision tree compared to the baselines. With accuracy of 62%,

content clarity gives a 10% relative improvement over the majority-class baseline. It seems that content

clarity provides some indication of the temporal ambiguity of a query. Without temporal information, it is

surprising that content clarity says anything about distinguishing these query classes. It is clear, though,

that there are important aspects not measured in the feature. Using temporal features alone, we get a

relative improvement of 21% over the majority baseline and 9% relative improvement using content clarity

aline. This improvement over content clarity suggests that temporal features better capture aspects of the

topics. Content and temporal features can be exploited simultaneously to give an accuracy of 70%, a 25%

relative improvement over the majority baseline.
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Accuracy

majority class .56

content clarity .62

temporal features .68

temporal features+content clarity .70

Table II. Accuracy of a decision tree trained to distinguish atemporal from temporally unambiguous queries, using the

TREC Novelty collection.

AP WSJ

majority class .54 .66

content clarity .54 .66

temporal features .71 .68

temporal features+content clarity .73 .73

Table III. Accuracy of a decision tree trained to distinguish atemporal from temporally ambiguous queries. Experiments

were performed separately on the TREC AP and WSJ collections.

7.2 Ad hoc Queries: Temporally Ambiguous and Atemporal

As described in Section 8, TREC ad hoc queries naturally fell into the two classes temporally ambiguous

and atemporal. Table III shows results for the automatic classification experiments. We see that while it is

always the case that temporal features are necessary to differentiate between these two classes, it is less clear

that they are sufficient; the improvement over the baseline is slight for WSJ. Inspecting the queries falsely

classified as temporally ambiguous, we noticed queries whose temporal characteristics were more subtle.

For example, queries such as “reform of the us welfare system” or “what backing does the national rifle

association have” were misclassified. These are less a collection of events than manifestations of popular or

political interest. Looking at the temporal profiles of these queries confirms this. The temporal profiles of

these queries rise and fall in the news according to popular or political opinion. We believe that event-driven

topics are better candidates for disambiguation than topics whose temporal characteristics are indirectly the

result of popular opinion. This raises an interesting area of future work addressing the distinction between

these types of topics.

7.3 Temporally Unambiguous, Temporally Ambiguous, and Atemporal Queries

For our final classification experiments, we turn to the complete task of distinguishing between all three

temporal categories of queries. We performed these experiments over the augmented TREC ad hoc queries,

and the web log queries, using the labels we described in Section 6.

We see in Table IV that we can make substantial improvements from the majority-class baseline for all

collections. What is interesting is that much better performance was achieved on the web search log data.
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Fig. 15. Decision tree learned to classify queries in the web search log dataset (Table IV). Numbers under the leaf

nodes represent number of class instances correctly labeled. Each class has 24 instances. Most of the temporally

unambiguous and atemporal queries are correctly classified using only features of the burst model (burst weight and

number of state transitions).

There are several explanations for this behavior. First, web searching behavior for the selected temporally

unambiguous queries is dramatically divergent. This is apparent when we inspect the decision tree learned

for the web search log set (Figure 15) . Almost all of the temporally unambiguous queries are correctly

classified by the conjunction of very large burst path cost savings (weight) and having fewer than two state

transitions. The type of profile exhibiting this behavior will have one high peak. Second, the web search

behavior for the selected atemporal queries is dramatically uniform. Again, inspecting the decision tree, we

notice that a large majority of the atemporal queries are correctly classified by low burst path cost savings.

It is the significantly better performance in these two classes that explains the better overall performance.

The performance on temporally ambiguous queries is comparable with the other corpora.

Thus we find that we are able to classify queries into the three temporal classes with much better accuracy

than the baseline. This gives us a way of triaging queries for different kinds of treatment. For example, we

may wish to provide a timeline for disambiguation for temporally ambiguous queries, while for temporally

unambiguous queries we may like to highlight the date of the event peak.

This kind of triage will be most useful when we can also identify which queries have high-quality or low-

quality results using our default retrieval methods. In the next section we will examine predicting a query’s

precision using content clarity and the temporal features of the retrieved set.
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AP WSJ search log

majority class .38 .37 .27

content clarity .40 .45 -

temporal features .65 .45 .75

temporal features+content clarity .65 .43 -

Table IV. Accuracy for decisions trees trained to distinguish between all classes on both TREC collections and a

web search log. The set of queries for the TREC collections are augmented by queries constructed to be temporally

unambiguous.

8. PREDICTING A QUERY’S AVERAGE PRECISION

Cronen-Townsend et al. [Cronen-Townsend et al. 2002] showed that content clarity correlates with average

precision, when using the Spearman rank-correlation test. This allows an information retrieval system to

rank a set of queries by the likely quality of results. Low quality queries can be improved by further

processing by requesting feedback from the user. However, clarity does not permit the system to predict

the likely precision of any individual query, beyond a binary classification. In this section we analyze the

Spearman rank correlation of temporal features with average precision. We also build models to predict

the average precision of queries using a combination of temporal and content features, that is, using the

temporal features we described in Section 3 along with content clarity as a feature describing the content.

While any relationship between these features and average precision may be nonlinear, we first perform linear

regression. This will allow us to compare the importance of features by examining their coefficients. We

then use our measures of temporal clarity along with content clarity as input features to a neural network

for predicting average precision.

For all experiments described in this section, we normalize the input features to lie between zero and one,

by shifting and scaling the values. We now define a training and test collection, as well as performance

measures. For these retrieval experiments we use the TREC collection of news documents and queries

described in Section 4.

8.1 Spearman Rank Correlation

The Spearman rank correlation coefficient allows us to examine the relationship between predictor and

predicted variables, without assuming any particular structure to that relationship. For example, with the

Spearman rank correlation coefficient, we can measure whether increases in content clarity lead to increases

in average precision, without assuming that these are, for example, linear increases. Positive correlation

using the Spearman rank correlation test tells us that there is a relationship between the variables. However,

it does not tell us how to predict one variable from the other. The Spearman rank correlation is also not

defined over multiple variables simultaneously. Thus we cannot use it to find whether we can improve our

understanding of the average precision of a query by combining predictor variables.
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AP WSJ

feature R
2 prob R

2
R

2 prob R
2

autocorrelation 0.36 0.01 -0.05 0.72

burstAverageIdleTime 0.10 0.50 -0.02 0.87

burstWeightSavings 0.28 0.05 0.05 0.73

contentClarity 0.54 5.0e-05 0.50 2.0e-04

kurtosis 0.14 0.32 0.22 0.12

temporalKL 0.01 0.94 0.14 0.31

Table V. Spearman rank correlation coefficient for correlation with average precision, for content clarity, and our

proposed temporal features, for AP and WSJ. Statistically significant rank-correlations are shown in bold along with

their significance levels.

8.2 Linear Regression

Linear regression allows us to combine multiple predictor variables, to predict linear changes in the average

precision. That is, we are finding a linear relationship between our predictor variables and average precision.

The coefficients of the variables show us their relative importance in predicting average precision, though

two variables which are correlated may wind up with lower coefficients. For this reason we will also show the

coefficients for each variable when used in isolation for predicting average precision. Since linear regression

looks for linear relationships between variables, it is a stronger test with strong assumptions about the

relationship between variables. We are less likely to find statistically significant correlations with linear

regression than with Spearman rank correlation, particularly when the underlying relationship is nonlinear.

8.3 Neural Networks

Neural networks allow us to model nonlinear relationships between combinations of predictor variables.

The hidden layers allow the representation of sub-combinations of features, which may aid with prediction.

A neural network outputs a prediction of average precision for any input, and we can then compare the

prediction with the actual average precision for a query. We measure the difference between actual and

predicted average precision.

8.4 Results of Spearman Rank Correlation of Features with Average Precision

Table V shows the Spearman rank correlation with average precision for each feature in isolation. We see

that the correlation of content clarity with average precision is much higher than all other features, and that

this correlation is statistically significant. This reproduces the results obtained by Cronen-Townsend et al.

[Cronen-Townsend et al. 2002]. For our temporal features, the correlation is much lower, and for most features

the measure of correlation is not statistically significant. This means that most of the temporal features are

not predictive of average query precision, when used in isolation. However, note that a combination of these
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AP WSJ

independent variables train test train test

content clarity 0.33 0.21 0.41 0.36

temporal features 0.40 0.15 0.38 0.17

content + temporal features 0.71 0.52 0.75 0.60

Table VI. Correlation from Linear Regression: Average precision is the dependent variable. Independent variables are

content clarity, and our measures of temporal clarity. Test correlation was found by cross-validation, by fitting the

line using training data, then measuring correlation with held-out test data. For the row labeled “content + temporal

features” we use all our temporal features, as well as content clarity as inputs to the linear regression.

features may be predictive of average query precision. For the AP dataset, autocorrelation was positively

correlated with the rank of average query precision at the 0.01 level, and burst weight savings was correlated

at the 0.05 level. That means these two features may contribute to an improved predictive model of average

precision, when combined with each other and content clarity, if they are not redundantly correlated with

one another.

8.5 Results of Linear Regression of Features against Average Precision

Table VI shows the correlation using linear regression lines between average precision and measures of

query clarity. Test correlation was found by cross-validation, by fitting the line using training data, then

measuring correlation with held-out test data. Note that for both AP and WSJ, the combination of content

and temporal measures shows a much stronger correlation with average precision than content clarity or

temporal features alone. This means that our measures of temporal clarity contribute to the understanding

of the likely effectiveness of a query with respect to a corpus. Note also that the correlation scores remain

high when tested using cross-validation.

The variables with strong predictive power are shown in Table VII with their coefficients for predicting

average precision. The coefficients shown are with ridge regression, which performs normalization and

removes potentially irrelevant features. This led to the best predictive results. To estimate the standard

deviation of the coefficients, we performed pairs bootstrapping for 10,000 iterations, without normalization.

Thus these standard deviations give an upper bound on the uncertainty of the estimates of coefficient

strength. Note that while some of the features are unstable, we obtain high correlation scores, even on a

held-out set of data not used for fitting the regression lines.

Interestingly, the magnitude of the coefficient for content clarity is not the largest. We find that tem-

poralKL has a negative coefficient. This shows that queries with temporal profiles very different from the

background model are likely to have low average precision. This suggests that queries which retrieve doc-

uments from an unusual subset of days in the collection are likely to perform poorly. These may be good

candidates for a relevance feedback interface which highlights the days on which retrieved documents ap-
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AP WSJ

feature coeff s
2 coeff s

2

autocorrelation 0.43 0.22 -0.24 0.19

burstAverageIdleTime - 0.19 0.70 6.58

burstNumTransitions 0.19 0.19 1.0 8.23

contentClarity 0.97 0.34 0.96 0.13

kurtosis 0.28 0.31 - 0.21

temporalKL -1.3 0.45 -0.83 0.26

Table VII. Coefficients of individual features in linear ridge regression for predicting average precision for AP and WSJ

data. Also shown is the sample standard deviation over 10,000 iterations of bootstrapping pairs linear regression,

without normalization.

peared, and allows the user to select the appropriate timeframe. We discuss a possible interface of this form

in Section 9.

How do we explain the predictive performance of temporalKL, which does not predict average precision

when used in isolation, but which has a negative coefficient in conjunction with the other features? We can

infer that it explains some parts of average precision which are not explained by the other features, but only

when we know the values of the other features.

8.6 Results of Neural Networks to Predict Average Precision

Neural networks can be used to learn non-linear functions. We used the Weka implementation of neural

networks [Witten and Frank 1999]. Our target function is average precision. In all cases we used one hidden

layer. In the case of content clarity only as an input feature, we used a single node in the hidden layer. In all

other cases we used three nodes in the single hidden layer. All input features are connected to all nodes in

the hidden layer. We used a learning rate of 0.3 and momentum of 0.2, 10% validation set and 500 training

epochs, with early termination of training if the accuracy on the validation set grew worse over 20 epochs.

We used 80% of the data for training, 10% for validation, and 10% for testing.

As a baseline, we guessed the mean average precision over all queries. The mean average precision was

0.28 over all queries on WSJ, and 0.30 over all queries on AP. When we use this value for average precision

for every query in the test set, we can calculate how much each query deviates from this level of average

precision, and calculate root-mean squared error (error in terms of difference between predicted and actual

query average precision), and root relative squared error (error in terms of a percentage of the actual average

precision of a query). With these baseline average precision values, predicted average precision was on

average 0.20 from the true value (root mean squared error), with 100% root relative squared error, as shown

in the first row of Table VIII. By using the other features as input to a neural network, we hope to gain

predictions of average precision for each query which are more reliable than guessing these baselines.
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AP WSJ

features RMSE RRSE RMSE RRSE

baseline 0.20 100% 0.22 100%

NN: content clarity 0.53 101% 0.18 87%

NN: temporal features 0.31 98% 0.27 131%

NN: content +

temporal features 0.27 88% 0.13 63%

LR: content +

temporal features 0.23 92% 0.18 82%

Table VIII. Error in predicting average precision using a neural net with 1 hidden layer. RMSE is root mean squared

error of the predicted value on a held-out test set. RRSE is root relative squared error on the held-out test set. In the

final row we show these measures on the model built with linear regression. We see that neural networks performed

better at prediction than linear regression, so we gain predictive power from the non-linear transformations.

We see in Table VIII that content clarity in isolation reduced the root relative squared error for WSJ to

87%, and that temporal features in isolation do not reduce the root relative squared error. However, the

final row of Table VIII shows that using the combination of temporal and content clarity with a neural net,

we can reduce both the root mean squared error and the root relative squared error from the default. This

means that we are able to predict average precision with greater accuracy than the default, and greater

accuracy than using content clarity alone. In the final row we show these measures on the model built with

linear regression. We see that neural networks performed better at prediction than linear regression, so we

gain predictive power from the non-linear transformations.

8.7 Summary of Precision Prediction

In this section we showed that temporal features can aid in predicting the average precision of a query’s

retrieval results. This means that we identify poorly performing query and elicit further processing, such as

relevance feedback and temporal disambiguation.

9. VISUALIZATION

In this section we move on to the question: how should we treat temporally ambiguous queries through user

interaction? If we wish to perform query-specific relevance feedback based on the temporal properties of a

query, we need a way of showing the user the distribution of relevant documents over time. The visualization

technique we will describe here is applicable to all types of queries, but most useful for temporally ambiguous

queries.

We will assume that the component events of a query are non-overlapping so we only need to consider

segmenting the information into an annotated timeline. This task was divided into three parts: determine the

time-spans corresponding to events, construct a language model for each event, and use the event language
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models to build event summaries.

9.1 Detecting Events

Recall that Kleinberg’s burst model, described in Section 3.4, models the rate of document production for

the documents retrieved for a query. This is modeled as a combination of two rates: a low rate of document

production, in which documents are generated from the idle state, and a higher rate of document production,

when documents are generated from the event state.

The time-spans of an event can then be extracted from the state sequence decoding of the burst model.

We combine unbroken chains of event states into a single event. For example, if January 3, 1992 and January

4, 1992 both are both predicted to be in the “event” state, then we treat both the dates as days in the same

event.

9.2 Constructing Event Language Models

Event language models can easily be constructed by using the documents which lie within the time-spans

as evidence for the event language model. So, if the burst model decoding indicated that an event occurred

during a particular two week range, the subset of the original top N documents retrieved for the query,

which lie within this time-span, would be used to make the event language model. Formally,

P̂ (w|E) =
1

|E|

∑

D∈E

P (w|D) (11)

where E is the subset of top N documents within the particular timespan. Equation 11 calculates the

maximum likelihood estimate for this distribution. Subsequent references to P (w|E) represent the maximum

likelihood model smoothed using Jelinek-Mercer smoothing with a weightof 0.2 for the background model.

9.3 Building Event Summaries

Given these event language models, then, we can think of two ways of presenting summaries of their infor-

mation to the user. First, we can inspect the distribution of terms in P (w|E). Presenting a list of terms

in order of decreasing probability might result in many corpus-wide high-probability terms being displayed.

Therefore, we look at the pointwise KL divergence measure of per-term contribution to Equation 7 [Tomokiyo

and Hurst 2003]. Specifically, the pointwise KL divergence is defined as,

δ(p||q) = p(w) log
p(w)

q(w)
(12)

where p is our event model and q is some reference distribution over words. This gives us a measure of

the distinguishing quality of each word in the event model with respect to the reference model. Using the

collection language model as our reference distribution may result in a good summary of the query as a

whole but may not serve to distinguish between the events in the topic. Therefore, we use the query model,
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Sept 1996

urge
hebron

fm
clash

uneasy

Jan 1997

resume
talk

concrete
interim
austria

Jan 1998

agree
reach

suspend
blame
sign

Jan 1999

status
final

launch
process
revive

Oct 1999

Fig. 16. Non-extracted Summaries: The AQUAINT corpus was used to visualize the temporal profile of the query

“Israel-Palestine”. Kleinberg’s burst model is used to detect event boundaries. Event language models are built from

documents within these ranges. Summaries consist of the terms with the highest point Kullback-Leibler divergence

with respect to the collection language model.

P (w|Q), as our reference model q; this model is estimated out of the top N documents as,

P (w|Q) =
∑

D∈R

P (w|D)
P (Q|D)

∑

D′∈R P (Q|D′)
(13)

where R is the set of top N documents and there is a uniform prior over the documents.Therefore, the terms

in our event model are ranked according to δ(P (w|E)||P (w|Q)). We refer to the top five terms from this list

as the non-extractive summary.

Figure 16 shows the non-extractive summary for the query “Israel-Palestine”. We notice that the words

chosen hint at the nature of the events, though we cannot tell for example, who is blaming who. Increasing

the size of the extracted terms from unigrams to bigrams or trigrams could lead to more informative extracted

summaries.

Another way to generate summaries from the event models is to consider sentences from the set of in-event

documents. Let sentence likelihood refer to the sentence level analog of document likelihood such that,

P (s|E) =
∏

w∈V

P (w|E)sw (14)

Where sw refers to the number of times word, w, occurs in the sentence. If S is the set of all sentences in these

documents, we can calculate the likelihood of each sentence and pick the most likely sentence. Formally, the

event summary is the sentence, s∗, with the highest likelihood,

s∗ = argmaxs∈SP (s|E)

= argmaxs∈S

∏

w∈V

P (w|E)sw (15)

We are interested in relatively high precision and useful summaries so we restrict S to the set of document

titles. We refer to the most likely title as the extractive summary of an event. Figure 17 shows the extractive

summary for the query “Israel-Palestine”. We notice that a sentence makes the summary easier to interpret.

However, we cannot be sure that some of the properties of the event are missing from the single sentence

chosen.
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Sept 1996

 Israel Palestine Far Apart
On Hebron

Jan 1997

 Israel Palestine to Hold
talks in New York

Jan 1998

 Israel Palestine Reach Peace
Deal

Jan 1999

 Arafat No Agreement Between
Israel Palestine

Oct 1999

Fig. 17. Extracted Summaries: Using the same query and event models as in Figure 16, summaries are the in-event

document titles with the highest likelihood of having been produced by the event language model.

10. RELATED WORK

In terms of classifying queries into temporal classes, Swan and Jensen performed retrieval with 10 queries from

the TDT2 corpus [Swan and Jensen 2000]. They perform feature discovery with the matching documents,

and characterize the queries into types, based on the number of features found by TimeMines. They describe

those queries for which TimeMines found many features as having many subtopics. They suggest that queries

for which few or no features were discovered can be described as topics which are fairly static. Our work differs

in that we categorized the temporal-category of queries before performing retrieval and feature extraction,

and showed that we can use the features to predict those categories.

Li and Croft proposed the inclusion of temporal evidence into the document prior of a language modeling

retrieval system [Li and Croft 2003]. The authors first manually triaged TREC queries into temporal

classes based on the distribution of known relevant documents. Queries in particular classes were then given

different document priors. Their work demonstrates how to incorporate temporal information if we know

which temporal class a query belongs to. However, the authors do not address the problem of automatically

detecting which class queries belong to.

In terms of precision prediction, Cronen-Townsend et al. introduced content clarity [Cronen-Townsend

et al. 2002] as a content-based method for predicting system performance given a query. We expand on this

work by adding time to the content features. He and Ounis [He and Ounis 2004] investigated alternative

content-based measures, and found that the retrieval step is not imperative, as statistics from the corpus as

a whole can predict as well as those from a retrieved set. There has also been work on query based event

extraction [Chieu and Lee 2004].

In terms of visualization, Swan and Jensen [Swan and Jensen 2000] extract noun-phrases and named

entities from documents, and find correlations between phrases and timespans using a χ2 test. They select

the top phrases according to the χ2 statistic, and show that these correlate with significant events in the news.

They also present an interface for visualizing the top stories in a corpus based on the features discovered.

This is essentially a data mining task, in that they find features only for a subset of the documents, and not

for specified documents. We generalize this approach to the ad hoc retrieval scenario and conduct analysis

with respect to the searcher’s query.
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Chieu and Lee evaluated sentence-based temporal summarization methods [Chieu and Lee 2004]. In

this work, temporal information is extracted from the natural language of the sentence and timelines are

constructed based on sentence relevance and number of relevant sentences on that date. Timelines are then

evaluated according to user satisfaction. Our work focuses on evaluating temporal profiles for auxiliary tasks

such as classification and prediction.

11. DISCUSSION

Temporal profiles provide a method for predicting relevant dates for a particular query. Learning algorithms

can successfully exploit information encoded in these profiles to improve tasks such precision prediction and

query triage. Despite these positive results, we believe there are several areas left to explore.

We constructed and evaluated temporal profiles using collections where documents were uniformly dis-

tributed over time. In practice, collections often contain nonuniform document distributions. Future work

should be cautious about applying our estimation technique without first testing the uniformity of the

document distribution. Adapting the estimation technique for non-uniform distribution remains an open

problem.

We found that the quality of retrieval results is correlated with the distribution in time of the documents

retrieved. Since we found that we can identify temporally ambiguous queries, these are good candidates for

disambiguation with a small time series interface. We proposed a candidate interface in Section 9. We propose

that a small time series be shown both to summarize the results, and to allow the user to provide temporal

relevance feedback if desired. Users frequently select spelling suggestions and related query options in search

engines, since these assist the searching process [Anick 2003]. Adding a temporal summary and feedback

mechanism when the time component is significant should lead to increased satisfaction of information needs.

The definition of the temporal classes were guided by our intuition about what types of queries would be

helpful for disambiguation or pseudo-feedback. One way to evaluate these categories would be to simulate

the effects of these decisions. For example, if our classifier predicted a temporally unambiguous query, we

might prefer documents in that time period without feedback. In the case of temporally ambiguous queries,

we might request disambiguation using the interface from Section 9.

In order to understand the human issues with temporal feedback, we need to conduct user studies. We

can do this in two ways. With small groups of users in laboratory settings, we can evaluate task completion

and survey users about their level of satisfaction. We can also evaluate it with large groups of users by

implementing and deploying the feedback mechanism in a search engine. We can then measure click-through-

rate and session length. If the interface appears useful to web searchers, we may see click-through on the

page which is higher than in a control group. If the feedback is effective, we may see greater interaction

with results, with lower rates of search abandonment, and longer dwell times on result pages. We expect

the temporal interface to be a good complement to similar, content-based disambiguation interfaces such as

document and terminological feedback.
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Finally, our temporal profiles use document time stamps to estimate P (t|D). Oftentimes document also

contain a variety of temporal information in the content. When automatically detected, these dates can

provide additional evidence for use when estimating our temporal profiles.

12. CONCLUSIONS

We have demonstrated that temporal information can successfully be leveraged for several retrieval tasks. For

example, we showed that the temporal estimation procedure outlined in Section 2 generated a representation

useful for precision prediction, temporal classification, and visualization. In all cases, temporal information

improves performance over merely looking at the topical aspects of documents.

More importantly, our work presents an instance of a more general class of metadata ambiguity problems.

That is, in addition to the temporal domain, this work can be extended into other metadata such as geog-

raphy, language, and familiarity. As metadata are increasingly attached to documents, the incorporation of

metadata into content-based systems will become an important research area for the information retrieval

community.
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