
Solving Large Scale Linear SVM with Distributed
Block Minimization

Dmitry Pechyony, Libin Shen and Rosie Jones
Akamai Technologies

{dpechyon,lishen,rejones}@akamai.com

Abstract

Over recent years we have seen the appearance of huge datasets that do not fit
into memory and do not even fit on the hard disk of a single computer. Moreover,
even when processed on a cluster of machines, data are usually stored in a dis-
tributed way. The transfer of significant subsets of such datasets from one node
to another is very slow. We present a new algorithm for training linear Support
Vector Machines over such large datasets. Our algorithm assumes that the dataset
is partitioned over several nodes on a cluster and performs a distributed block min-
imization along with the subsequent line search. The communication complexity
of our algorithm is independent of the number of training examples. With our
Map-Reduce/Hadoop implementation of this algorithm the accurate training of
SVM over the datasets of tens of millions of examples takes less than 11 minutes.

1 Introduction
The Support Vector Machine (SVM) [4] is one of the most robust machine learning algorithms
developed to date, and one of the most commonly used ones. Over the last 15 years algorithms for
training SVMs have been evolving from being scalable to thousands of examples to being scalable
to millions. Nevertheless, current state-of-the-art sequential linear SVM solvers are relatively slow
([3, 19]) if they are trained over tens of millions of high-dimensional examples. The scalability of
the state-of-the-art sequential solvers of nonlinear SVM is even worse ([15]).
The scalability of sequential solvers can be improved by parallelization. In this paper we present
a new distributed linear SVM solver, referred to as DBM (distributed block minimization). DBM
is a distributed version of LIBLINEAR solver of linear SVM [7]. DBM is also influenced by the
ideas from LIBLINEAR-CDBLOCK [19] extension of LIBLINEAR. DBM operates on a dataset
that is distributed over k nodes on a cluster. During the optimization process DBM maintains the
global primal solution w at the master node and k slave nodes. Also each slave node maintains a
subset of the global dual solution α that corresponds to the examples that are stored in that node.
At each iteration the current value of w is used to compute a new α in a distributed way. The
new α is then used to compute an updated w. The former step is done by a simplified version of
LIBLINEAR-CDBLOCK, the latter one is done by using a line search.
DBM is designed to minimize the latency of training and communication. We do not require that the
data in each slave node to fit in memory so that the number k of nodes used can be independent of
the number of examples. The communication complexity of DBM is O(k× number of dimensions)
and with the fixed k is independent of the number of examples. We implemented DBM as an
extension of LIBLINEAR-CDBLOCK on Hadoop. Our experiments with two large datasets of tens
of millions of examples show a significant speedup over the sequential LIBLINEAR-CDBLOCK
solver. In particular on the dataset of 79M examples it took LIBLINEAR-CDBLOCK 3 hours to
achieve the same test accuracy as the one achieved by DBM within 11 minutes.
Related Work. The idea of training SVM on the subsets of training set goes back to the chunking
algorithm of [14]. Unlike DBM, in chunking algorithm the blocks are overlapping. Many previous
attempts in distributed SVM training were focused on parallelizing particular steps of sequential
solvers [6, 18, 20, 2, 17, 16]. With the exception of [17, 16], those papers focused on parallelizing
the solvers of nonlinear SVMs. The approach of [17] needs to keep the entire dataset in the memory
of the master node. This limits the size of the training set to one which will fit into memory. Our

1



approach does not have this limitation and in fact does not require the master node to keep any
examples in memory. The algorithm of [16] has the same property. But, as shown by [16], the
sequential version of the algorithm of [16] is slower than LIBLINEAR, that is a sequential version
of DBM. We plan to do a detailed comparison of DBM with the algorithm of [16] in the future.
Previously published fully distributed algorithms [8, 9] for training SVM are significantly different
from ours. Unfortunately both [8] and [9] do not provide experiments with large datasets.
Recently the field of online algorithms has become very active. [5, 11, 13, 21] perform paralleliza-
tion over examples in the primal space, while DBM does this in the dual one. DBM is conceptually
similar to SHOTGUN algorithm of [1] that performs parallelization over the features in the primal
space. Since there is one-to-one correspondence between training examples and the coordinates of
the dual solution, DBM can be viewed as doing parallelization over the features in the dual space.

2 Review of Sequential Block Minimization for solving SVM [19]
Let T = {(x′

i, yi)}ni=1,x
′
i ∈ Rd, yi ∈ {+1,−1} be a training set. A linear SVM generates a

classifier h(x′) = w′Tx′ + b, where w ∈ Rd and b ∈ R. Let w = [w′; b] and x = [x′; 1]. Then
h(x) = wTx. The vector w is obtained by solving minw∈Rd fP (w) = ∥w∥22/2+C

∑n
i=1 max(1−

yiw
Txi, 0). The corresponding dual optimization problem is

min
α∈Rn

fD(α) = αTQα/2− eTα , s.t. ∀ 1 ≤ i ≤ n, 0 ≤ αi ≤ C , (1)

where Qij = yiyjxixj and e = [1, . . . , 1]T . Given the dual solution α, the primal one is

w =
n∑

i=1

yiαixi . (2)

Let {Bi}ki=1 be a fixed partition of T and the corresponding dual variables α into k blocks. These
blocks are disjoint and

∪n
i=1 Bi = T . We overload the notation and refer to Bi both as a set of

indices and a set of corresponding training examples. Yu et al. [19] showed that (1) can be solved
using sequential block minimization (SBM): at each iteration we consider a block Bi and solve (1)
only for the variables in Bi. The remarkable fact, shown in [19], is that when solving (1) for the
variables in Bi we do not need to keep in memory the variables from other blocks. We now describe
this observation in more details, since our forthcoming distributed algorithm is heavily based on it.

Let αt ∈ Rd be a solution of (1) after t iterations. Suppose that at the (t + 1)-th iteration we are
optimizing (1) for the variables in Bi, and di = αt+1 − αt. The direction di has nonzero values
only in the coordinates from Bi and is found by solving

min
di∈Rd

(αt + di)TQ(αt + di)/2− eT (αt + di) (3)

subject to ∀ j ∈ Bi, 0 ≤ αt
j + dij ≤ C , ∀ j ̸∈ Bi, d

i
j = 0 .

Let dBi be a vector of |Bi| nonzero coordinates of di that correspond to the indices in Bi. The
objective (3) is equivalent to

dT
Bi
QBi,BidBi/2 + (αt)TQ:,BidBi − eTdBi , (4)

where QBi,Bi
is a submatrix of Q with all the indices in Bi and Q:,Bi

is a submatrix of Q with the
column indices being in Bi. It follows from (2) that for any 1 ≤ j ≤ n, αTQ:,Bi = yj(w

t)Txj ,
where wt is a primal solution after t iterations. Let XBi be a d × |Bi| matrix. The j-th column of
XBi is the j-th example in Bi, multiplied by its label. Then the second term of (4) is wTXBidBi

and we obtain that in order to solve (3) for the variables in Bi we need to solve

min
dBi

dT
Bi
QBi,Bi

dBi
/2 + (wt)TXBi

dBi
− eTdBi

(5)

subject to ∀ j ∈ Bi, 0 ≤ αt
j + dij ≤ C .

To solve (5) we only need to keep in memory the examples from the block Bi and the d-dimensional
vector wt. After solving (5) the vector wt is updated as wt+1 = wt +

∑
j∈Bi

dijyjxj . In summary,
at the (t+1)-th iteration SBM solves (5) for a single Bi and then updates wt using the last formula.

3 Distributed Block Minimization
In distributed block minimization (DBM), at each iteration, we process all the blocks Bi, 1 ≤ i ≤ k
simultaneously. This is done by solving (5) in parallel on k slave nodes. We denote by αt

i the local

2



Algorithm 1 DSVM-AVE - distributed block minimization with averaging
Input: The ith slave node has a block {Bi}ki=1; the master node has a feasible solution w1 of (1).

1: for t = 1, 2, . . . do
2: Send wt from the master node to k slave nodes.
3: for i = 1 to k, in parallel do
4: At the ith slave node: solve (5) for Bi and obtain di;

send ∆wt
i =

∑
r∈Bi

diryrxr to the master node;
set αt+1

i = αt
i + 1/k · di

5: end for
6: Set wt+1 = wt + 1

k

∑k
i=1 ∆wt

i .
7: end for

Algorithm 2 DSVM-LS - distributed block minimization with the line search
The same as Algorithm 1 with Step 6 replaced by
At the master node: find λ∗ = argmin0≤λ≤1 fP (w

t + λ
∑k

i=1 ∆wt
i);

set wt+1 = wt + λ∗ ∑k
i=1 ∆wt

i .

version of αt at the ith slave node. αt
i has nonzero values only in the indices from Bi. The ith

node computes di and the difference ∆wt
i =

∑
r∈Bi

diryrxr between the current primal solution
wt and the new one. Then ∆wt

i is sent from the ith slave node to the master node. Upon receiving
{∆wt

i}ki=1 the master node computes the new primal solution wt+1 = wt +
∑k

i=1 ∆wt
i/k and

sends it back to the slave nodes. In the appendix we provide a justification for 1/k multiplier. We
denote this straightforward algorithm as DSVM-AVE and describe it formally at Algorithm 1.

Let d =
∑k

i=1 d
i. Another way of updating wt is to do a line search along the direction

w̄ =
k∑

i=1

∆wt
i =

n∑
i=1

diyixi . (6)

The resulting algorithm, denoted as DSVM-LS, is formalized at Algorithm 2. Note that the direction
w̄ might not be a descent direction in the primal space. We now explain this effect in more details.

Since each slave node solves (5), for any 1 ≤ i ≤ k, fD(αt + di) < fD(αt). Using the convexity
of fD(α) we have that di · ∇fD(αt) < 0. Therefore

∑k
i=1 d · ∇fD(αt) = dTQαt − dTe < 0.

But it follows from (2) and (6) that

w̄T∇fP (w
t) = w̄Twt − Cw̄T

∑
i : 1−yiwt·xi>0

yixi = dTQαt − Cw̄T
∑

i : 1−yiwt·xi>0

yixi. (7)

In general it is possible that (7) is not negative and thus w̄ is not a descent direction. For example, if
the last sum is empty and d = αt then (7) reduces to (αt)TQαt. Since Q is positive-semidefinite,
the last expression is not negative. A more general conclusion from this derivation is that if d is a
descent direction in the dual space then the corresponding primal direction w̄ =

∑n
i=1 diyixi is not

necessary a descent direction in the primal space. Nevertheless, we observe empirically in Section 4
that there are iterations when w̄ is a descent direction and this allows DSVM-LS to optimize fP (w).
It can be verified that at each outer iteration both DSVM-AVE sends O(kd) bytes. Also, if the
complexity of the line search is O(kd) (see Section 4 for such implementation of line search) then
each iteration of DSVM-LS has the same complexity. Thus if the number of the outer iterations is
constant then the communication complexity of these algorithms is independent of the training set
size. In our experiments (see Section 4) we observed that the number of outer iterations needed to
achieve empirically good results is less than 20.

4 Experiments
We implemented Algorithms 1 and 2 using the Map-Reduce framework on a Hadoop cluster. Each
block optimization task is a mapper job. Line search is implemented as multi-round grid search with
Map-Reduce on blocks. We used a fixed grid {λr}20r=1 of step sizes. At each iteration the master
node receives from the slave ones the value of ∆wi, computes

∑k
i=1 ∆wi and sends it to the slaves.

Then each slave node i computes 20 values erir =
∑

j∈Bi
max(0, 1 − yi(w + λr∆w)Txi) and

sends them to the master. Finally the master uses erir’s to choose the best step size.

3



set original source training size test size #features #nonzeros

ADS Akamai proprietary 79,620,765 81,883,670 5,384 2,603,374,016
MSR Microsoft Learning to rank 37,010,170 10,659,213 136 3,838,258,824

Table 1: Data sets

 140

 145

 150

 155

 160

 165

 1000  10000  100000

pr
im

al
 o

bj
ec

tiv
e

training time (seconds)

LIBLINEAR-CDBLOCK
DSVM-LS

DSVM-AVE

 60

 61

 62

 63

 64

 65

 1000  10000  100000

ac
cu

ra
cy

%

training time (seconds)

LIBLINEAR-CDBLOCK
DSVM-LS

DSVM-AVE

Figure 1: Experimental results on ADS.
We tested DBM on two large data sets, ADS and MSR. Their statistics are listed in Table 4. The
ADS set is a proprietary dataset of Akamai. It has contains data for advertising modeling. The MSR
dataset is transformed from Microsoft learning to rank dataset [10] by pairwise sampling. We only
use pairs whose ranks are consecutive. We use 20 blocks for ADS experiments, and 50 blocks for
MSR. Such number of blocks guarantee that each block fits into memory.

Figures (1) and (2) show the primal objective function and the accuracy on the test set. The
X axis represents the wall-clock time of training. Each box is the result of the iteration of
LIBLINEAR-CDBLOCK, that passes over all blocks sequentially. Each circle/staris is result of
the iteration of DSVM-LS/DSVM-AVE that processes all blocks in parallel. Since LIBLINEAR-
CDBLOCK training is slow on these large datasets, we use logarithmic scale for the X axis. As
shown in the graphs DSVM-LS converges more quickly than DSVM-AVE with the help of line
search, and significantly faster than LIBLINEAR-CDBLOCK.
DSVM-AVE completed the first iteration in 613 seconds on ADS and in 337 seconds on MSR,
and the first round results provided reasonably good performance. It took LIBLINEAR-CDBLOCK
6,910 and 8,090 seconds respectively to complete the first iteration on each set, and its results are
not as good as DSVM-AVE’s. As to optimal values, DSVM-LS obtained better results in much less
time as compared to LIBLINEAR-CDBLOCK, on both the objective function and test accuracy.
These graphs show also that all three algorithms do not necessary decrease value of the primal
objective function at each iteration. This is an empirical confirmation of the effect discussed in
Section 4. But despite this we observe the global convergence. For LIBLINEAR-CDBLOCK this
was expected, since its global convergence was already proven in [19]. But for two other algorithms
the global convergence has yet to be proven.

5 Conclusions and Future Work
We have presented a new algorithm for distributed training of linear SVM. Our Hadoop implemen-
tation allows us to obtain within 11 minutes accurate results on the datasets of tens of millions
of examples. The future work includes the proof of the global convergence of DBM algorithms,
combination of DBM with selective block minimization [3] and feature hashing [12].

 1e+06

 1e+07

 1e+08

 1e+09

 1000  10000  100000

pr
im

al
 o

bj
ec

tiv
e

training time (seconds)

LIBLINEAR-CDBLOCK
DSVM-LS

DSVM-AVE

 48

 50

 52

 54

 56

 58

 1000  10000  100000

ac
cu

ra
cy

%

training time (seconds)

LIBLINEAR-CDBLOCK
DSVM-LS

DSVM-AVE

Figure 2: Experimental results on MSR.

4



References
[1] J. Bradley, A. Kyrola, D. Bickson, and C. Guestrin. Parallel coordinate descent for L1-regularized loss

minimization. In ICML, pages 321–328, 2011.
[2] E.Y. Chang, K. Zhu, H. Wang, H. Bai, J. Li, Z. Qiu, and H. Cui. Psvm: Parallelising support vector

machines on distributed computers. In NIPS, 2008.
[3] K.-W. Chang and D. Roth. Selective block minimization for faster convergence of limited memory large-

scale linear models. In KDD, pages 699–707, 2011.
[4] C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20(3):273–297, 1995.
[5] O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao. Optimal distributed online prediction. In ICML,

pages 713–720, 2011.
[6] I. Durdanovic, E. Cossatto, and H.-P. Graf. Large-scale parallel SVM implementation. In L. Bottou,

O. Chapelle, D. DeCoste, and J. Weston, editors, Large Scale Kernel Machines, pages 105–138. MIT
Press, 2007.

[7] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. Liblinear: A library for large linear
classification. JMLR, 9:1871–1874, 2008.

[8] P.A. Forero, A. Cano, and G. Giannakis. Consensus-based distributed support vector machines. JMLR,
11:1663–1707, 2010.

[9] T. Hazan, A. Man, and A. Shashua. A parallel decomposition solver for SVM: distributed dual ascend
using Fenchel duality. In CVPR, 2008.

[10] http://research.microsoft.com/en us/projects/mslr/.
[11] J. Langford, A.J. Smola, and M. Zinkevich. Slow learners are fast. In NIPS, pages 2331–2339, 2009.
[12] P. Li, A. Shrivastava, J. Moore, and C. Konig. Hashing algorithms for large-scale learning. In NIPS, 2011.
[13] G. Mann, R. McDonald, M. Mohri, N. Silberman, and D. Walker. Efficient large-scale distributed training

of conditional maximum entropy models. In NIPS, pages 1231–1239, 2009.
[14] E. Osuna, R. Freund, and F. Girosi. an improved training algorithm for support vector machines. In

Proceedings of 1997 IEEE Workshop on Neural Networks for Signal Processing, pages 276–285, 1997.
[15] S. Sonnenburg and V. Franc. Coffin: A computational framework for linear svm. In ICML, 2010.
[16] C.H. Teo, S.V.N. Vishwanathan, A. Smola, and Q.V. Le. Bundle methods for regularized risk minimiza-

tion. JMLR, 11:311–365, 2010.
[17] K. Woodsend and J. Godsio. Hybrid mpi/openmp parallel linear support vector machine training. JMLR,

10:1937–1953, 2009.
[18] E. Yom-Tov. A distributed sequential solver for large-scale svms. In L. Bottou, O. Chapelle, D. DeCoste,

and J. Weston, editors, Large Scale Kernel Machines, pages 139–154. MIT Press, 2007.
[19] H.-F. Yu, C.-J. Hsieh, K.-W. Chang, and C.-J. Lin. Large linear classification when data cannot fit in

memory. In KDD, pages 833–842, 2010.
[20] L. Zanni, T. Serafini, and G. Zanghirati. Parallel software for training large scale support vector machines

on multiprocessor systems. JMLR, 7:1467–1492, 2006.
[21] M. Zinkevich, M. Weimer, A.J. Smola, and L. Li. Parallelized stochastic gradient descent. In NIPS, pages

2595–2603, 2010.

A Justification of 1/k factor in DSVM-AVE
Let fD(αt)+λdi∇fD(αt) be a linear approximation of gi(λ) = fD(αt+λdi). Since di solves (5),
λ = 1 minimizes gi(λ). We would like to find µ that will minimize g(µ) = fD(αt + µ

∑k
i=1 d

i).
We have that

g(µ) = fD(αt + µ

k∑
i=1

di) ≈ fD(αt) +

k∑
i=1

µdi∇fD(αt)

=
1

k

k∑
i=1

fD(αt) +
1

k

k∑
i=1

kµdi∇fD(αt)

=
1

k

k∑
i=1

(
fD(αt) + kµdi∇fD(αt)

)
≈ 1

k

k∑
i=1

gi(kµ) .

5



Since µ = 1/k minimizes each of gi(kµ), we assume that µ = 1/k approximately minimizes g(µ).
Combining this further with (2) we obtain the update rule wt+1 = wt + 1

k

∑k
i=1

∑
j∈Bi

dijyjxi of
DSVM-AVE.

6


